Epoxy resin was modified by multi-walled carbon nanotubes(MWCNTs)with an in situ method.The composite was observed using scanning electron microscopy (SEM)and X-ray diffraction (XRD),and its abrasive wear resist...Epoxy resin was modified by multi-walled carbon nanotubes(MWCNTs)with an in situ method.The composite was observed using scanning electron microscopy (SEM)and X-ray diffraction (XRD),and its abrasive wear resistance and tensile properties were tested.The results show that the function groups found on the surface of MWCNTs helped to improve the resin's crack resistance,and the cracks were found notably reduced in the composite.Although the resin and MWCNTs were bonded physically ,the tensile properties and wear resistance of the composite were improved notably when an optimum amount of MWCNTs were filled in Epilote-44(E44).When 5wt pct acidified MWCNTs were filled in E44,the elastic modulus ,breaking strength and wear resistance of the composite increase to 226.7%,303.3%and 272.55%(153.29%),respectively.展开更多
Objective: To study and compare the hemocompatibility of MWCNTs and hydroxyl modificated MWCNTs (MWCNTs-OH). Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared...Objective: To study and compare the hemocompatibility of MWCNTs and hydroxyl modificated MWCNTs (MWCNTs-OH). Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle assays, platelet-adhesion and hemolytic rate assays. Results: The results showed that the two MWCNTs had a similar surface topography and MWCNTs-OH were functionalized with hydroxyl groups on their surfaces. Water contact angle assays indicated that MWCNTs were hydrophobic materials, whereas MWCNTs-OH was hydrophilic. The platelet-adhesion assays displayed that the platelet-adhesion rate of MWCNTs-OH was much lower than MWCNTs. The hemolytic rate assays showed that the hemolytic rates of both MWCNTs were lower than the standard value of 5%. Conclusion: MWCNTs-OH shows superior anticoagulant capacity over MWCNTs. Both MWCNTs and MWCNTs-OH are nonhemolytic materials.展开更多
In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption ...In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption spectrometry. The MWCNTs were oxidized by potassium permanganate under appropriate conditions before use as preconcentration packing. Parameters influencing the recoveries of target analytes were optimized. Under optimal conditions, the target analyte exhibited a good linearity (R^2=0.9992) over the concentration range 0.5-50 ng/ml. The detection limit and precision of the proposed method were 0.15 ng/ml and 2.06%, respectively. The proposed method was applied to the determination of cadmium in real-world environmental samples and the recoveries were in the range of 91.3%-108.0%. All these experimental results indicated that this new procedure could be applied to the determination of trace cadmium in environmental waters.展开更多
Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-as...Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostatic adhesion.In the second assembling,NR/MWCNTs composites were developed by mixing MWCNTs/PDDA solution with NR latex.The results show that MWCNTs are homogenously distributed throughout the NR matrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents are less than 3 wt%.Moreover,the addition of the MWCNTs brings about the remarkable enhancement in tensile strength and crosslink density compared with the NR host,and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded,aggregations of MWCNTs are gradually generated,and the tensile strength and crosslink both decrease to a certain extent.展开更多
In this study, the effect of multi-walled carbon nanotubes (MWCNTs) additive on the dehydriding properties of the Zn(BH4)2/NaCl composite prepared by high energy ball milling were investigated. X-ray diffraction ...In this study, the effect of multi-walled carbon nanotubes (MWCNTs) additive on the dehydriding properties of the Zn(BH4)2/NaCl composite prepared by high energy ball milling were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) results demonstrated that Zn(BH4)2 was produced from mechanochemical reaction between ZnCl2 and NaBH4. Compared with the undoped sample, 10 wt% MWCNTs effectively lowered the decomposition temperature of Zn(BH4)2 by 15 ℃. The complex released 3.6 wt% hydrogen within 250 s at 100 ℃ and totally released 4.5 wt% hydrogen within 2500 s, indicating it has a considerable potential as a hydrogen storage material.展开更多
The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various ...The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various weight contents.The results of mechanical properties of the MWCNTs/SAC composites indicated that the addition of 0.08 wt% MWCNTs can improve the SAC compressive strength, flexural strength, and bend-press ratio by 15.54%, 52.38%, and 31.30% at maximum, respectively. The degree of SAC hydration and porosity and pore size distribution of the matrix were measured by X-ray diffraction(XRD), thermal analysis(TG/DTG), and mercury intrusion porosimetry(MIP). Results show that the addition of MWCNTs in SAC composites can promote the hydration of SAC and the formation of C-S-H gel, reduce the porosity and refine the pore size distribution of the matrix. The microstructure was characterized by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). It is found that the MWCNTs have been dispersed homogeneously between the hydration products of SAC paste and act as bridges and networks between cracks and voids, which prevents the development of the cracks and transfers the load.展开更多
The microstructural evolution and oxidation resistance of multi-walled carbon nanotubes (MWCNTs) by di- rectly heating silicon powder and MWCNTs in a coke bed from 1000 to 1500 ~C are investigated with the aid of X-...The microstructural evolution and oxidation resistance of multi-walled carbon nanotubes (MWCNTs) by di- rectly heating silicon powder and MWCNTs in a coke bed from 1000 to 1500 ~C are investigated with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and thermogravimetry-differential scanning calorimetry (TG-DSC). The results showed that the morphology and microstructure of MWCNTs did not change much after being treated from 1000 ~C to 1200 ~C. An obvious SiC coating was formed on the surface of MWCNTs from 1300 to 1400 ~C. Up to 1500 ~C, nearly all the MWCNTs transformed into SiC nanowires. The oxidation resistance of the treated MWCNTs was improved compared with as-received ones. Non-isothermal kinetics showed that the oxidation activation energy of the treated MWCNTs reached 208 kJ/mol, much higher than 264 k J/tool of as-received ones.展开更多
Multi-walled carbon nanotube(MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. W...Multi-walled carbon nanotube(MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. We studied the effects of nisin coating on the attachment of Bacillus anthracis spores, the germination of attached spores, and the subsequent biofilm formation from attached spores. It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating. Nisin coating on MWCNT sheets decreased surface hydrophobicity, reduced spore attachment, and reduced the germination of attached spores by 3.5 fold, and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet. Nisin also changed the morphology of vegetative cells in the formed biofilm.The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.展开更多
Recycled polystyrene (PS) cups were chopped up and separately incorporated with multiwall carbon nanotubes (MWCNTs) and NiZn ferrite (Ni0.6Zn0.4Fe2O4) nanoparticles prior to electrospinning under different condi...Recycled polystyrene (PS) cups were chopped up and separately incorporated with multiwall carbon nanotubes (MWCNTs) and NiZn ferrite (Ni0.6Zn0.4Fe2O4) nanoparticles prior to electrospinning under different conditions. These nanoscale inclusions were initially dispersed well in dimethylformamide (DMF), and then known amounts of the recycled PS pieces were added to the dispersions prior to 30 min of sonication followed by 4 h of high-speed agitation at 750 r/min. The thermal, dielectric, surface hydrophobic, and magnetic properties of the resultant nanocomposite fibers were determined by thermal comparative, capacitance bridge, vibrating sample magnetometer (VSM), and goniometer techniques, respectively. Test results confirmed that the physical properties of recycled nanofibers were significantly increased as a function of the inclusion concentrations, which may be because of their excellent properties. The consumption of polymeric products as well as their waste materials has dramatically grown worldwide. Although plastic recycling, reprocessing, and reusing rates are growing, the physical properties and economic value of recycled plastics are significantly low. Consequently, this work provides a detailed explanation of how to improve recycled plastics, making them into highly valued new nanoproducts for various industrial applications, including filtration, textile, transportation, construction, and energy.展开更多
We propose a method to estimate the natural frequencies of the multi-walled carbon nanotubes (MWCNTs) embedded in an elastic medium. Each of the nested tubes is treated as an individual bar interacting with the adja...We propose a method to estimate the natural frequencies of the multi-walled carbon nanotubes (MWCNTs) embedded in an elastic medium. Each of the nested tubes is treated as an individual bar interacting with the adjacent nanotubes through the inter-tube Van der Waals forces. The effect of the elastic medium is introduced through an elastic model. The mathematical model is finally reduced to an eigen value problem and the eigen value problem is solved to arrive at the inter-tube resonances of the MWCNTs. Variation of the natural frequencies with different parameters are studied. The estimated results from the present method are compared with the literature and results are observed to be in close agreement.展开更多
The present study focuses on the thermal response of carbon fiber-reinforced phenolic composites, where the matrix has been modified with different reinforcements. Two types of materials, multiwalled carbon nanotubes ...The present study focuses on the thermal response of carbon fiber-reinforced phenolic composites, where the matrix has been modified with different reinforcements. Two types of materials, multiwalled carbon nanotubes and zirconium diboride (ZrB2), were used in a new design of mixture to produce the heat- resistant ablative composite system. The CNT/ZrB2/carbon/phenolic nanocomposite (Z/NT-CR) system corresponding to CNT/carbon/phenolic nanocomposite (NT-CR) showed a reasonable decrease in mass loss and the ablation rate as compared to carbon/phenolic composite (CR). However, substantial drop in two factors was found for Z/NT-CR as compared to carbon/phenolic and NT-CR. Ablation mechanisms for all three composites were investigated by thermal gravimetric analysis in conjunction with micro- structural studies using a field emission scanning electron microscope. The microstructural studies revealed that CNTs acted as an ablation resistant phase for protection against 2000 ℃, and the conversion from ZrB2 to ZrO2 played an important role as an insulator in the performance of char layer in the ablation resistance.展开更多
We use molecular dynamics (MD) simulations to study the effects of vacancies on tube diameters and interwall spacings of multi-walled carbon nanotubes (MWCNTs). Two types of vacancies, double vacancy and three danglin...We use molecular dynamics (MD) simulations to study the effects of vacancies on tube diameters and interwall spacings of multi-walled carbon nanotubes (MWCNTs). Two types of vacancies, double vacancy and three dangling-bond (3DB) single vacancy, are identified to have opposite effects on the tube size change, which explains the inconsistency of the experimentally measured interwall spacings of MWCNTs after electron beam irradiation. A theoretical model to quantitatively predict the shrunk structures of the irradiated MWCNTs is further developed. We also discuss the fabrications of prestressed MWCNTs, in which reduced interwall spacings are desired to enhance the overall elastic modulus and strength.展开更多
文摘Epoxy resin was modified by multi-walled carbon nanotubes(MWCNTs)with an in situ method.The composite was observed using scanning electron microscopy (SEM)and X-ray diffraction (XRD),and its abrasive wear resistance and tensile properties were tested.The results show that the function groups found on the surface of MWCNTs helped to improve the resin's crack resistance,and the cracks were found notably reduced in the composite.Although the resin and MWCNTs were bonded physically ,the tensile properties and wear resistance of the composite were improved notably when an optimum amount of MWCNTs were filled in Epilote-44(E44).When 5wt pct acidified MWCNTs were filled in E44,the elastic modulus ,breaking strength and wear resistance of the composite increase to 226.7%,303.3%and 272.55%(153.29%),respectively.
基金National Natural Science Foundation of Chinagrant number:11075116 and 51272176+3 种基金National Basic Research Program of China(973 Program)grant number:2012CB933604Open Research Fund of the State Key Laboratory of Bioelectronics,Southeast Universitythe Key Laboratory of Beam Technology and Material Modification of the Ministry of Education,Beijing Normal University
文摘Objective: To study and compare the hemocompatibility of MWCNTs and hydroxyl modificated MWCNTs (MWCNTs-OH). Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle assays, platelet-adhesion and hemolytic rate assays. Results: The results showed that the two MWCNTs had a similar surface topography and MWCNTs-OH were functionalized with hydroxyl groups on their surfaces. Water contact angle assays indicated that MWCNTs were hydrophobic materials, whereas MWCNTs-OH was hydrophilic. The platelet-adhesion assays displayed that the platelet-adhesion rate of MWCNTs-OH was much lower than MWCNTs. The hemolytic rate assays showed that the hemolytic rates of both MWCNTs were lower than the standard value of 5%. Conclusion: MWCNTs-OH shows superior anticoagulant capacity over MWCNTs. Both MWCNTs and MWCNTs-OH are nonhemolytic materials.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No.2006AA06Z424)Personal Innovation Foundation of Universities in Henan Province (No.[2005]-126)+1 种基金Youth Science Foundation of Henan Normal University (No.2004005)Natural Science Foundation of Henan Province (No.072300460010).
文摘In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption spectrometry. The MWCNTs were oxidized by potassium permanganate under appropriate conditions before use as preconcentration packing. Parameters influencing the recoveries of target analytes were optimized. Under optimal conditions, the target analyte exhibited a good linearity (R^2=0.9992) over the concentration range 0.5-50 ng/ml. The detection limit and precision of the proposed method were 0.15 ng/ml and 2.06%, respectively. The proposed method was applied to the determination of cadmium in real-world environmental samples and the recoveries were in the range of 91.3%-108.0%. All these experimental results indicated that this new procedure could be applied to the determination of trace cadmium in environmental waters.
基金Funded by the National Natural Science Foundation of China (No.50763006)Ministry of Science and Technology R & D Research Institutes (No.2008EG134285)973 Program Special Fund (No.2010CB635109)
文摘Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostatic adhesion.In the second assembling,NR/MWCNTs composites were developed by mixing MWCNTs/PDDA solution with NR latex.The results show that MWCNTs are homogenously distributed throughout the NR matrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents are less than 3 wt%.Moreover,the addition of the MWCNTs brings about the remarkable enhancement in tensile strength and crosslink density compared with the NR host,and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded,aggregations of MWCNTs are gradually generated,and the tensile strength and crosslink both decrease to a certain extent.
基金the financial support from Hunan Provincial Namral Science Foundation of China (No.10JJ2037)National Natural Science Foundation of China(Grant No.51021063)
文摘In this study, the effect of multi-walled carbon nanotubes (MWCNTs) additive on the dehydriding properties of the Zn(BH4)2/NaCl composite prepared by high energy ball milling were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) results demonstrated that Zn(BH4)2 was produced from mechanochemical reaction between ZnCl2 and NaBH4. Compared with the undoped sample, 10 wt% MWCNTs effectively lowered the decomposition temperature of Zn(BH4)2 by 15 ℃. The complex released 3.6 wt% hydrogen within 250 s at 100 ℃ and totally released 4.5 wt% hydrogen within 2500 s, indicating it has a considerable potential as a hydrogen storage material.
基金Funded by the National Natural Science Foundation of China(No.51578108)Special Fund for Scientific Research in the Public Interest by Ministry of Water Resource of the People’s Republic of China(No.201501003)Dalian Projects of Construction Technology(No.201307)
文摘The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various weight contents.The results of mechanical properties of the MWCNTs/SAC composites indicated that the addition of 0.08 wt% MWCNTs can improve the SAC compressive strength, flexural strength, and bend-press ratio by 15.54%, 52.38%, and 31.30% at maximum, respectively. The degree of SAC hydration and porosity and pore size distribution of the matrix were measured by X-ray diffraction(XRD), thermal analysis(TG/DTG), and mercury intrusion porosimetry(MIP). Results show that the addition of MWCNTs in SAC composites can promote the hydration of SAC and the formation of C-S-H gel, reduce the porosity and refine the pore size distribution of the matrix. The microstructure was characterized by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). It is found that the MWCNTs have been dispersed homogeneously between the hydration products of SAC paste and act as bridges and networks between cracks and voids, which prevents the development of the cracks and transfers the load.
基金supported by the Natural Science Foundation of Hubei Province (No.2009CDA050)the New Century Excellent Talents in University (No. NCET-10-0137)the National Natural Science Foundation of China (No. 51072143)
文摘The microstructural evolution and oxidation resistance of multi-walled carbon nanotubes (MWCNTs) by di- rectly heating silicon powder and MWCNTs in a coke bed from 1000 to 1500 ~C are investigated with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and thermogravimetry-differential scanning calorimetry (TG-DSC). The results showed that the morphology and microstructure of MWCNTs did not change much after being treated from 1000 ~C to 1200 ~C. An obvious SiC coating was formed on the surface of MWCNTs from 1300 to 1400 ~C. Up to 1500 ~C, nearly all the MWCNTs transformed into SiC nanowires. The oxidation resistance of the treated MWCNTs was improved compared with as-received ones. Non-isothermal kinetics showed that the oxidation activation energy of the treated MWCNTs reached 208 kJ/mol, much higher than 264 k J/tool of as-received ones.
基金supported by the US Army Research Office(ARO)(#W911NF-10-1-0160)support from the Golden Leaf Foundation for major research instruments and facilities
文摘Multi-walled carbon nanotube(MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. We studied the effects of nisin coating on the attachment of Bacillus anthracis spores, the germination of attached spores, and the subsequent biofilm formation from attached spores. It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating. Nisin coating on MWCNT sheets decreased surface hydrophobicity, reduced spore attachment, and reduced the germination of attached spores by 3.5 fold, and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet. Nisin also changed the morphology of vegetative cells in the formed biofilm.The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.
基金the Department of Energy(DE-EE0004167)the Wichita State University for financial and technical support to the present work
文摘Recycled polystyrene (PS) cups were chopped up and separately incorporated with multiwall carbon nanotubes (MWCNTs) and NiZn ferrite (Ni0.6Zn0.4Fe2O4) nanoparticles prior to electrospinning under different conditions. These nanoscale inclusions were initially dispersed well in dimethylformamide (DMF), and then known amounts of the recycled PS pieces were added to the dispersions prior to 30 min of sonication followed by 4 h of high-speed agitation at 750 r/min. The thermal, dielectric, surface hydrophobic, and magnetic properties of the resultant nanocomposite fibers were determined by thermal comparative, capacitance bridge, vibrating sample magnetometer (VSM), and goniometer techniques, respectively. Test results confirmed that the physical properties of recycled nanofibers were significantly increased as a function of the inclusion concentrations, which may be because of their excellent properties. The consumption of polymeric products as well as their waste materials has dramatically grown worldwide. Although plastic recycling, reprocessing, and reusing rates are growing, the physical properties and economic value of recycled plastics are significantly low. Consequently, this work provides a detailed explanation of how to improve recycled plastics, making them into highly valued new nanoproducts for various industrial applications, including filtration, textile, transportation, construction, and energy.
文摘We propose a method to estimate the natural frequencies of the multi-walled carbon nanotubes (MWCNTs) embedded in an elastic medium. Each of the nested tubes is treated as an individual bar interacting with the adjacent nanotubes through the inter-tube Van der Waals forces. The effect of the elastic medium is introduced through an elastic model. The mathematical model is finally reduced to an eigen value problem and the eigen value problem is solved to arrive at the inter-tube resonances of the MWCNTs. Variation of the natural frequencies with different parameters are studied. The estimated results from the present method are compared with the literature and results are observed to be in close agreement.
文摘The present study focuses on the thermal response of carbon fiber-reinforced phenolic composites, where the matrix has been modified with different reinforcements. Two types of materials, multiwalled carbon nanotubes and zirconium diboride (ZrB2), were used in a new design of mixture to produce the heat- resistant ablative composite system. The CNT/ZrB2/carbon/phenolic nanocomposite (Z/NT-CR) system corresponding to CNT/carbon/phenolic nanocomposite (NT-CR) showed a reasonable decrease in mass loss and the ablation rate as compared to carbon/phenolic composite (CR). However, substantial drop in two factors was found for Z/NT-CR as compared to carbon/phenolic and NT-CR. Ablation mechanisms for all three composites were investigated by thermal gravimetric analysis in conjunction with micro- structural studies using a field emission scanning electron microscope. The microstructural studies revealed that CNTs acted as an ablation resistant phase for protection against 2000 ℃, and the conversion from ZrB2 to ZrO2 played an important role as an insulator in the performance of char layer in the ablation resistance.
基金Project supported by the National Basic Research Program (973) of China (No 2007CB936803)the National High-Tech R&D Program (863) of China (No 2008AA03Z302)+1 种基金the National Natural Science Foundation of China (No 10832005)the Joint Research Scheme of the National Natural Science Foundation of China and Research Grants Council of Hong Kong (No 50518003)
文摘We use molecular dynamics (MD) simulations to study the effects of vacancies on tube diameters and interwall spacings of multi-walled carbon nanotubes (MWCNTs). Two types of vacancies, double vacancy and three dangling-bond (3DB) single vacancy, are identified to have opposite effects on the tube size change, which explains the inconsistency of the experimentally measured interwall spacings of MWCNTs after electron beam irradiation. A theoretical model to quantitatively predict the shrunk structures of the irradiated MWCNTs is further developed. We also discuss the fabrications of prestressed MWCNTs, in which reduced interwall spacings are desired to enhance the overall elastic modulus and strength.