Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found tha...Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.展开更多
Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-var...Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-varying, which will degrade the ISAR image quality for the traditional range-Doppler (RD) algorithm. In this paper, the received signal in a range bin is characterized as the multi-component polynomial phase signal (PPS) after the motion compensation, and a new approach of time-frequency represen- tation, generalized polynomial Wigner-Ville distribution (GPWVD), is proposed for the azimuth focusing. The GPWVD is based on the exponential matched-phase (EMP) principle. Compared with the conventional polynomial Wigner-Ville distribution (PWVD), the EMP principle transfers the non-integer lag coefficients of the PWVD to the position of the exponential of the signal, and the interpolation can be avoided completely. For the GPWVD, the cross-terms between multi-component signals can be reduced by decomposing the GPWVD into the convolution of Wigner-Ville distribution (WVD) and the spectrum of phase adjust functions. The GPWVD is used in the ISAR imaging of ship targets, and the high quality instantaneous ISAR images can be obtained. Simulation results and measurement data demonstrate the effectiveness of the proposed new method.展开更多
文摘Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.
基金supported by the National Natural Science Foundation of China (61001166)the Specialized Research Fund for the Doctoral Program of Higher Education (20092302120002)+3 种基金the Aerospace Support Fund (2011-HT-HGD-16)the Fundamental Research Funds for the Central Universities (HIT.BRETIII.201207)the Postdoctoral ScienceResearch Developmental Foundation of Heilongjiang Province (LBHQ11092)the Heilongjiang Postdoctoral Specialized Research Fund
文摘Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-varying, which will degrade the ISAR image quality for the traditional range-Doppler (RD) algorithm. In this paper, the received signal in a range bin is characterized as the multi-component polynomial phase signal (PPS) after the motion compensation, and a new approach of time-frequency represen- tation, generalized polynomial Wigner-Ville distribution (GPWVD), is proposed for the azimuth focusing. The GPWVD is based on the exponential matched-phase (EMP) principle. Compared with the conventional polynomial Wigner-Ville distribution (PWVD), the EMP principle transfers the non-integer lag coefficients of the PWVD to the position of the exponential of the signal, and the interpolation can be avoided completely. For the GPWVD, the cross-terms between multi-component signals can be reduced by decomposing the GPWVD into the convolution of Wigner-Ville distribution (WVD) and the spectrum of phase adjust functions. The GPWVD is used in the ISAR imaging of ship targets, and the high quality instantaneous ISAR images can be obtained. Simulation results and measurement data demonstrate the effectiveness of the proposed new method.