This paper presents an efficient method for globally optimizing and automating component sizing for rotary traveling wave oscillator arrays. The lumped equivalent model of transmission lines loaded by inverter pairs i...This paper presents an efficient method for globally optimizing and automating component sizing for rotary traveling wave oscillator arrays. The lumped equivalent model of transmission lines loaded by inverter pairs is evaluated and posynomial functions for oscillation frequency, power dissipation, phase noise, etc. are formulated using transmission line theory. The re- sulting design problem can be posed as a geometric programJning problem, which can be efficiently solved with a convex opti- mization solver. The proposed method can compute the global optima more efficiently than the traditional iterative scheme and various design problems can be solved with the same circuit model. The globally optimal trade-off curves between competing objectives are also computed to carry out robust designs and quickly explore the design space.展开更多
基金Project (No 20060335065) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education, China
文摘This paper presents an efficient method for globally optimizing and automating component sizing for rotary traveling wave oscillator arrays. The lumped equivalent model of transmission lines loaded by inverter pairs is evaluated and posynomial functions for oscillation frequency, power dissipation, phase noise, etc. are formulated using transmission line theory. The re- sulting design problem can be posed as a geometric programJning problem, which can be efficiently solved with a convex opti- mization solver. The proposed method can compute the global optima more efficiently than the traditional iterative scheme and various design problems can be solved with the same circuit model. The globally optimal trade-off curves between competing objectives are also computed to carry out robust designs and quickly explore the design space.