Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep...Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.展开更多
Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145...Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.展开更多
Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Compari...Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.展开更多
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoo...Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.展开更多
The aim of the present work is to assess the offshore wave energy potential along the Atlantic coast of Morocco.Research works of this paper focus on the identification of the most energetic sites for wave energy conv...The aim of the present work is to assess the offshore wave energy potential along the Atlantic coast of Morocco.Research works of this paper focus on the identification of the most energetic sites for wave energy converters(WECs)deployment.For this purpose,11 sites have been explored;all of them are located at more than 40m depth on the Moroccan Atlantic coast.The wave power at each site is computed on the basis of wave data records in terms of significant wave height and energy period provided by theWaveWatch three(WW3)model.Results indicate that the coast sites located between latitudes 30°30′N and 33°N are the most energetic with an annual average wave power estimated at about 30 kW?m^-1,whereas,in the other sites,the wave power is significantly lower.Moreover,the study of the monthly and seasonal temporal variability is found to be uniform in the powerful sites with values four times greater in winter than in summer.The directional investigation on the significant wave height has shown that for almost all the powerful sites,the incoming waves have a dominant sector ranging between Northern(N)and Western-Northern-Western(WNW)directions.展开更多
基金The National Natural Science Foundation of China under contract No.50779015the National Key Technology R&D Program of China under contract No.2012BAB03B01
文摘Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA122803)the Special Funds for Marine Commonweal Research(No.201305032)the ESA-MOST Dragon 3 Cooperation Program(No.10466)
文摘Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.
基金Supported by the South China Sea Institute of Oceanology,Chinese Academy of Sciences
文摘Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.
基金This project is supported bythe Canadian Panel on Energy Research and Development (Offshore Environmental Fac-tors Program) , ONR (US Office of Naval Research) via GoMOOS-the Gulf of Maine Ocean Observing System,Petroleum Research Atlantic Canada (PRAC) ,and the CFCAS (Canada Foundation for Climate and AtmosphericStudies) ,Canadian Panel on Energy Research and Development (Offshore Environmental Factors Program) .It is al-so supported bythe Advanced Doctoral Fund of the Ministry of Education of China (Grant No.20030294010)
文摘Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.
基金conducted as part of the research activity within the EMISys research team at the Turbomachinery Lab with the institution’s financial support of Mohammadia School of Engineers and Mohammed V University in Rabat
文摘The aim of the present work is to assess the offshore wave energy potential along the Atlantic coast of Morocco.Research works of this paper focus on the identification of the most energetic sites for wave energy converters(WECs)deployment.For this purpose,11 sites have been explored;all of them are located at more than 40m depth on the Moroccan Atlantic coast.The wave power at each site is computed on the basis of wave data records in terms of significant wave height and energy period provided by theWaveWatch three(WW3)model.Results indicate that the coast sites located between latitudes 30°30′N and 33°N are the most energetic with an annual average wave power estimated at about 30 kW?m^-1,whereas,in the other sites,the wave power is significantly lower.Moreover,the study of the monthly and seasonal temporal variability is found to be uniform in the powerful sites with values four times greater in winter than in summer.The directional investigation on the significant wave height has shown that for almost all the powerful sites,the incoming waves have a dominant sector ranging between Northern(N)and Western-Northern-Western(WNW)directions.