The NiAl phase prepared by pack cementation (PC) on a nickel base superalloy was investigated by X-ray photoelectron spectroscopy (XPS) and positron annihilation technique (PAT). The focus was on the effect of t...The NiAl phase prepared by pack cementation (PC) on a nickel base superalloy was investigated by X-ray photoelectron spectroscopy (XPS) and positron annihilation technique (PAT). The focus was on the effect of the solid solution of the alloying element from substrate on the binding energy of Ni (Al) 2p peaks and vacancy concentration of the NiAI phase formed in a superalloy. The results showed that the binding energy of Ni 2p peak of the NiAI phase grown in a superalloy was shifted by up to 0.55 eV at the temperature from 850 to 1050℃ towards higher energies and the binding energy of Al 2p peak by up to 1.09 eV in comparison with the NiAl phase formed in pure Ni. The positron lifetimes obtained from the NiAl phase formed in a superalloy were found to be markedly lower than the theoretical values, indicating the decrease in vacancy concentration. The variation of binding energies and vacancy concentration are possibly due to the solid solution of the alloying atoms from the substrate into the NiAI lattice.展开更多
Phosphor of KMgF3:Ce^3+ is synthesized through solvothermal method at 180 ℃ and characterized by means of X-ray powder diffraction (XRD) and environment scanning electron microscopy (ESEM). X-ray photoelectron ...Phosphor of KMgF3:Ce^3+ is synthesized through solvothermal method at 180 ℃ and characterized by means of X-ray powder diffraction (XRD) and environment scanning electron microscopy (ESEM). X-ray photoelectron spectroscopy (XPS) is applied to the study of the energy band structure of KMgF3:Ce^3+ and confirms the oxygen content of the product is very low. The fluorescence spectra of the rare-earth ion-doped KMgF3 is investigated by the fluorescence spectrophotometer. In the emission spectra, there is a broadband emission with a maximum center located at 306 nm arising from d-f transition of Ce^3+ in the host. This will be useful for ultraviolet tunable lasers.展开更多
Fluoride rubber F2311 film, an alternating copolymer of CF2-CFC1 (CTFE) and CH2-CF2 (VF2) components, was treated by atmospheric pressure dielectric barrier discharge (DBD) in air. The surface structure, topogra...Fluoride rubber F2311 film, an alternating copolymer of CF2-CFC1 (CTFE) and CH2-CF2 (VF2) components, was treated by atmospheric pressure dielectric barrier discharge (DBD) in air. The surface structure, topography and surface chemistry of the treated F2311 films were characterized by contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), respectively. The experimental results showed that a short time air plasma treatment led to morphological, wettability and chemical changes in the F2311 films. The surface hydrophilicity increased greatly after the plasma treatment, the static water contact angle decreased from 98.6° to 32°, and oxygen containing groups (C=O, O-C=O, etc. ) were introduced. Atomic force microscopy revealed that plasma produced by DBD etched F2311 films obviously. The roughness of the samples increased remarkably with the formation of peaks and valleys on the treated surfaces. The increased surface wettability may be correlated with both the introduction of hydrophilic groups due to air plasma oxidation of the surface and the change in surface morphology etched by DBD.展开更多
Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electromechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibi...Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electromechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs.Thus, we introduce the method of chemical mechanical polishing(CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti–6Al–4V(Ti64) in the CMP process, and optimize the composition of CMP slurry.Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy(XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti–6Al–4V.展开更多
Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface a...Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 ℃ to form P-N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P-N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P-N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P-N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.展开更多
Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron ...Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions.展开更多
A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron m...A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron microscopy(SEM), atomic force microscopy(AFM), and X-ray photoelectron spectroscopy(XPS), respectively, and its mechanical property and bonding strength were measured using a nanoindentation and scratch tester, respectively. The results show that the C-enriched DLC film exhibits a denser microstructure and smoother surface with lower surface roughness of 21.8 nm. The ratio of C sp2 at 284.4 e V that corresponds to the diamond(111) and the C sp3 at 285.3 e V that corresponds to the diamond(220) plane for the as-received film is 0.36: 0.64, showing that the C sp3 has the high content. The hardness and Young's modulus of DLC film by nanoindentation are 8.534 41 and 142.158 1 GPa, respectively, and the corresponding bonding strength is 74.55 N by scratch test.展开更多
The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by me...The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-2 in a 1 M H2SO4 solution. It is found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-2 implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum- implanted zircaloy-2 was discussed.展开更多
The chemisorbed structure for an aromatic molecule on a silicon surface plays an important part in promoting the development of organic semiconductor material science. The carbon K-shell x-ray photoelectron spectrosc...The chemisorbed structure for an aromatic molecule on a silicon surface plays an important part in promoting the development of organic semiconductor material science. The carbon K-shell x-ray photoelectron spectroscopy(XPS) and the x-ray absorption near-edge structure(XANES) spectra of the interfacial structure of an s-triazine molecule adsorbed on Si(100) surface have been performed by the first principles, and the landscape of the s-triazine molecule on Si(100) surface has been described in detail. Both the XPS and XANES spectra have shown their dependence on different structures for the pristine s-triazine molecule and its several possible adsorbed configurations. By comparison with the XPS spectra, the XANES spectra display the strongest structural dependency of all of the studied systems and thus could be well applied to identify the chemisorbed s-triazine derivatives. The exploration of spectral components originated from non-equivalent carbons in disparate local environments has also been implemented for both the XPS and XANES spectra of s-triazine adsorbed configurations.展开更多
It was reported that both dielectricity and magnetism at room temperature were appreciably improved in Bi4Fe2TiO12 film compared with Bi4Fe2TiO12 bulk. X-ray diffraction profiles reveal similar crystalline nature and ...It was reported that both dielectricity and magnetism at room temperature were appreciably improved in Bi4Fe2TiO12 film compared with Bi4Fe2TiO12 bulk. X-ray diffraction profiles reveal similar crystalline nature and random orientation of the two, but X-ray photoelectron spectroscopy (XPS) experiments indicate that it is 1.4 eV lower binding energy of core-state Ols in the film relative to that of the bulk, so the improvement of multiferroics in the film is attributed to oxygen vacancies and high fraction of interface. The results have promising applications in multifunctional integrated devices.展开更多
In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, usin...In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV, The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potcntiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×10^16 ions/cm^2. When the fluence is 1×10^16 or 1×10^17 ions/cm^2, the corrosion resistance of implanted sanaples was bad. Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.展开更多
To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1 × 10^16 to 1 × 10^17 cm^-2, using accelerating implanter at an extraction voltage of 190 kV and liqui...To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1 × 10^16 to 1 × 10^17 cm^-2, using accelerating implanter at an extraction voltage of 190 kV and liquid nitrogen temperature. Then the influence of argon ion implantation on the aqueous corrosion behavior of Zircaloy-4 was studied. The valence states of elements in the surface layer of the samples were analyzed using X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted Zircaloy-4 in 1 mol/L HzSO4 solution. It is found that there appear bubbles on the surface of the samples when the argon fluence is 1 × 10^16 cm^-2. The microstructure of argon-implanted samples changes from amorphous to partial amorphous, then to polycrystalline, and again to amorphous. The corrosion resistance of implanted samples linearly declines with the increase of fluence approximately, which is attributed to the linear increase of the irradiation damage.展开更多
Transmission electron microscopy and surface- and bulk-sensitive spectroscopic methods were used to study the morphology and the electronic structure of a hybrid organic-inorganic system composed of gold nanoparticles...Transmission electron microscopy and surface- and bulk-sensitive spectroscopic methods were used to study the morphology and the electronic structure of a hybrid organic-inorganic system composed of gold nanoparticles (NP's) which were distributed in an organic matrix. Au atoms deposited onto a copper phthalocyanine (CuPc) surface diffuse into the organic matrix and self-assemble in well defined NP's with metallic properties. No formation of a continuous metallic Au film on top of the CuPc film is observed up to nominal coverages as large as 130 A.展开更多
The oxidation behavior of alloy 690 exposed to high-temperature and high-pressure steam and water at 280℃ for 1 h was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray ph...The oxidation behavior of alloy 690 exposed to high-temperature and high-pressure steam and water at 280℃ for 1 h was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). In high-temperature and high-pressure steam, the oxide film is composed of an outermost Ni-rich hydroxides layer, an intermediate layer of hydroxides and oxides enriched in Cr, an inner oxide layer. The film formed in high-temperature water is similar to that in steam, except for missing the Ni-rich hydroxides layer. Samples with different surface finishes (electropolished, mechanically polished, ground, and as-received) were prepared for comparison. A general increase of the oxide thickness with the degree of surface roughness is observed. The equivalent oxide thicknesses lie in the range of 100-200 nm for the as-received samples, 150-250 nm for the samples ground to 400# and 10-20 nm for the samples ground to 1500#, mechanically polished, and electropolished.展开更多
In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2...In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2X5 coating exhibited a wider and stable passive region with lower passive current density in the potentiodynamic polarization and showed a considerably lower current density at different anodic potentials in the potentiostatic polarization.In order to understand the passivation mechanism of the Fe-based amorphous coating,the components of the passive films formed at various polarization potentials were examined by X-ray photoelectron spectroscopy.The synergistic effect of Mo,W,Mn and Cr in the passive films was systemically analyzed.It has been revealed that Mo and W facilitate the formation of compact and stable Cr2O3 passive film at lower potentials,and the substantial enrichment of Mn in the passive film enhances the passivation ability at relatively higher potentials.The deep understanding of the passivation characteristics in multicomponent alloy systems could provide a guide for the design of corrosion-resistant amorphous alloy coatings for engineering applications.展开更多
g-C3N4/TiO2 composite were prepared by hydrolysis of Ti(OC4Hn9) 4 and the precursors of g-C3N4 at room temperature and annealing in nitrogen atmosphere.X-ray diffraction results revealed that all the products were a...g-C3N4/TiO2 composite were prepared by hydrolysis of Ti(OC4Hn9) 4 and the precursors of g-C3N4 at room temperature and annealing in nitrogen atmosphere.X-ray diffraction results revealed that all the products were anatase structure.The chemical nature of O,N of the g-C 3N4/TiO2 were identified by X-ray photoelectron spectroscopy,presenting N-Ti-O and N-Ti-N doping status of the composite.The g-C3N4 /TiO2 composite showed better photocatalytic activity for the UV and visible-light degradation of Rhodamine B.展开更多
Glass formation range of Bi2O3-B2O3-TeO2 system has been investigated (B2O3 ≤ 40 mol%). Four glasses with compositions xBi2O3-B2O3-(70-x)TeO2 (x = 40, 50, 60 and 70 tool%) have been prepared by using melt quenc...Glass formation range of Bi2O3-B2O3-TeO2 system has been investigated (B2O3 ≤ 40 mol%). Four glasses with compositions xBi2O3-B2O3-(70-x)TeO2 (x = 40, 50, 60 and 70 tool%) have been prepared by using melt quenching technique. The effect of Bi2O3 content on thermal stability, optical properties and structures of these four Bi2O3-B2O3-TeO2 glasses is systematically investigated by inductive coupled plasma emission spectrometer (ICP), differential scanning calorimetry (DSC), Raman spectra and X-ray photoelectron spectroscopy (XPS). It is found that the density, refractive index and optical basicity increase with increasing Bi2O3. The Raman spectra and XPS spectra show that the glass network is mainly constituted by the [BiO6] octahedron, [TeO4] trigonal bipyramidal, [TeO3] trigonal pyramid, [BO3] trigonal pyramid and [B04] tetrahedron structural units. With increasing Bi2O3, the coordination number around B atom changes from 3 to 4 and [TeO4] units are converted to [TeO3] units. Bi5+ ions may exist in Bi2O3-B2O3-TeO2 (BBT) system and their amount grows with increasing Bi2O3 content.展开更多
In the present study, gallium nitride thin films were grown by using pulsed laser deposition. After the growth samples were annealed at 400 and 600 ℃ in the nitrogen atmosphere. Surface morphology of the as-grown and...In the present study, gallium nitride thin films were grown by using pulsed laser deposition. After the growth samples were annealed at 400 and 600 ℃ in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was observed by atomic force microscopy. Post-growth annealing results in an improved surface roughness of the films. Chemical analysis of the samples was performed by X-ray photoelectron spectroscopy. Stoichiometric gallium nitride thin films were obtained for the samples annealed at 600 ℃. Optical measurements of the samples were performed to measure the band gap and optical constants of the films. Effect of annealing on the band gap and optical constants of the films was studied.展开更多
TiO2 nanoparticles have been synthesized by using a TiO2@NaCl core-shell structure as the precursor. The surface defects were well preserved by the NaCl shell, and therefore high oxygen adsorption capacity was observe...TiO2 nanoparticles have been synthesized by using a TiO2@NaCl core-shell structure as the precursor. The surface defects were well preserved by the NaCl shell, and therefore high oxygen adsorption capacity was observed. After the NaC1 shell was removed, the resulting pure TiO2 nanoparticles were of anatase phase and uniform size of around 20-24 nm. The presence of an abundance of surface defects contributes to the high photocatalytic activity of the synthesized materials, and the TiO: mate- rials obtained from the TiO2@NaCl precursor can be used as efficient photocatalysts for degradation of rhodamine B under UV light irradiation.展开更多
基金Financial support from the National Natural Science Foundation of China under grant Nos. 50501024 and 50671102 is gratefully acknowledged.
文摘The NiAl phase prepared by pack cementation (PC) on a nickel base superalloy was investigated by X-ray photoelectron spectroscopy (XPS) and positron annihilation technique (PAT). The focus was on the effect of the solid solution of the alloying element from substrate on the binding energy of Ni (Al) 2p peaks and vacancy concentration of the NiAI phase formed in a superalloy. The results showed that the binding energy of Ni 2p peak of the NiAI phase grown in a superalloy was shifted by up to 0.55 eV at the temperature from 850 to 1050℃ towards higher energies and the binding energy of Al 2p peak by up to 1.09 eV in comparison with the NiAl phase formed in pure Ni. The positron lifetimes obtained from the NiAl phase formed in a superalloy were found to be markedly lower than the theoretical values, indicating the decrease in vacancy concentration. The variation of binding energies and vacancy concentration are possibly due to the solid solution of the alloying atoms from the substrate into the NiAI lattice.
基金supported by the National Natural Science Foundation of China(No.50702057).
文摘Phosphor of KMgF3:Ce^3+ is synthesized through solvothermal method at 180 ℃ and characterized by means of X-ray powder diffraction (XRD) and environment scanning electron microscopy (ESEM). X-ray photoelectron spectroscopy (XPS) is applied to the study of the energy band structure of KMgF3:Ce^3+ and confirms the oxygen content of the product is very low. The fluorescence spectra of the rare-earth ion-doped KMgF3 is investigated by the fluorescence spectrophotometer. In the emission spectra, there is a broadband emission with a maximum center located at 306 nm arising from d-f transition of Ce^3+ in the host. This will be useful for ultraviolet tunable lasers.
基金the Joint Foundation of the Council of National Natural Science Foundation of China(NSFC)China Academy of Engineering Physics(CAEP)the National Natural Science Foundation of China(NSAF United Foundation)
文摘Fluoride rubber F2311 film, an alternating copolymer of CF2-CFC1 (CTFE) and CH2-CF2 (VF2) components, was treated by atmospheric pressure dielectric barrier discharge (DBD) in air. The surface structure, topography and surface chemistry of the treated F2311 films were characterized by contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), respectively. The experimental results showed that a short time air plasma treatment led to morphological, wettability and chemical changes in the F2311 films. The surface hydrophilicity increased greatly after the plasma treatment, the static water contact angle decreased from 98.6° to 32°, and oxygen containing groups (C=O, O-C=O, etc. ) were introduced. Atomic force microscopy revealed that plasma produced by DBD etched F2311 films obviously. The roughness of the samples increased remarkably with the formation of peaks and valleys on the treated surfaces. The increased surface wettability may be correlated with both the introduction of hydrophilic groups due to air plasma oxidation of the surface and the change in surface morphology etched by DBD.
基金Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China(Grant No.2009ZX02030-1)the National Natural Science Foundation of China(Grant No.51205387)+1 种基金the Support by Science and Technology Commission of Shanghai City,China(Grant No.11nm0500300)the Science and Technology Commission of Shanghai City,China(Grant No.14XD1425300)
文摘Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electromechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs.Thus, we introduce the method of chemical mechanical polishing(CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti–6Al–4V(Ti64) in the CMP process, and optimize the composition of CMP slurry.Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy(XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti–6Al–4V.
基金supported by the National Natural Science Foundation of China(Grant No.50972144)
文摘Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 ℃ to form P-N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P-N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P-N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P-N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY16F040003 and LY16A040007)the National Natural Science Foundation of China(Grant Nos.51401069 and 11574067)
文摘Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions.
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)
文摘A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron microscopy(SEM), atomic force microscopy(AFM), and X-ray photoelectron spectroscopy(XPS), respectively, and its mechanical property and bonding strength were measured using a nanoindentation and scratch tester, respectively. The results show that the C-enriched DLC film exhibits a denser microstructure and smoother surface with lower surface roughness of 21.8 nm. The ratio of C sp2 at 284.4 e V that corresponds to the diamond(111) and the C sp3 at 285.3 e V that corresponds to the diamond(220) plane for the as-received film is 0.36: 0.64, showing that the C sp3 has the high content. The hardness and Young's modulus of DLC film by nanoindentation are 8.534 41 and 142.158 1 GPa, respectively, and the corresponding bonding strength is 74.55 N by scratch test.
基金the National Natural Science Foundation of China (No.50501011, G 2000067207-1)Postdoctoral Research Foundation of China (37th batch, No.2005037079)
文摘The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-2 in a 1 M H2SO4 solution. It is found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-2 implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum- implanted zircaloy-2 was discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874242,11804196,and 11804197)
文摘The chemisorbed structure for an aromatic molecule on a silicon surface plays an important part in promoting the development of organic semiconductor material science. The carbon K-shell x-ray photoelectron spectroscopy(XPS) and the x-ray absorption near-edge structure(XANES) spectra of the interfacial structure of an s-triazine molecule adsorbed on Si(100) surface have been performed by the first principles, and the landscape of the s-triazine molecule on Si(100) surface has been described in detail. Both the XPS and XANES spectra have shown their dependence on different structures for the pristine s-triazine molecule and its several possible adsorbed configurations. By comparison with the XPS spectra, the XANES spectra display the strongest structural dependency of all of the studied systems and thus could be well applied to identify the chemisorbed s-triazine derivatives. The exploration of spectral components originated from non-equivalent carbons in disparate local environments has also been implemented for both the XPS and XANES spectra of s-triazine adsorbed configurations.
文摘It was reported that both dielectricity and magnetism at room temperature were appreciably improved in Bi4Fe2TiO12 film compared with Bi4Fe2TiO12 bulk. X-ray diffraction profiles reveal similar crystalline nature and random orientation of the two, but X-ray photoelectron spectroscopy (XPS) experiments indicate that it is 1.4 eV lower binding energy of core-state Ols in the film relative to that of the bulk, so the improvement of multiferroics in the film is attributed to oxygen vacancies and high fraction of interface. The results have promising applications in multifunctional integrated devices.
基金This work was financially supported by the National Natural Science Foundation of China (No.50501011), the Ministry of Science andTechnology of China for Research Founding (MSTC No.G 2000067207-1), and the Postdoctoral Research Foundation of China (37thbatch, No.2005037079).
文摘In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV, The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potcntiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×10^16 ions/cm^2. When the fluence is 1×10^16 or 1×10^17 ions/cm^2, the corrosion resistance of implanted sanaples was bad. Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.
基金the National Nature Science Foundation of China(No.50501011)the Postdoctoral Research Foundation of China(No.2005037079)
文摘To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1 × 10^16 to 1 × 10^17 cm^-2, using accelerating implanter at an extraction voltage of 190 kV and liquid nitrogen temperature. Then the influence of argon ion implantation on the aqueous corrosion behavior of Zircaloy-4 was studied. The valence states of elements in the surface layer of the samples were analyzed using X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted Zircaloy-4 in 1 mol/L HzSO4 solution. It is found that there appear bubbles on the surface of the samples when the argon fluence is 1 × 10^16 cm^-2. The microstructure of argon-implanted samples changes from amorphous to partial amorphous, then to polycrystalline, and again to amorphous. The corrosion resistance of implanted samples linearly declines with the increase of fluence approximately, which is attributed to the linear increase of the irradiation damage.
文摘Transmission electron microscopy and surface- and bulk-sensitive spectroscopic methods were used to study the morphology and the electronic structure of a hybrid organic-inorganic system composed of gold nanoparticles (NP's) which were distributed in an organic matrix. Au atoms deposited onto a copper phthalocyanine (CuPc) surface diffuse into the organic matrix and self-assemble in well defined NP's with metallic properties. No formation of a continuous metallic Au film on top of the CuPc film is observed up to nominal coverages as large as 130 A.
基金supported by the Special Funds for the Major State Basic Research Projects(G2011CB610502)the National Natural Science Foundation of China (No.51025104)
文摘The oxidation behavior of alloy 690 exposed to high-temperature and high-pressure steam and water at 280℃ for 1 h was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). In high-temperature and high-pressure steam, the oxide film is composed of an outermost Ni-rich hydroxides layer, an intermediate layer of hydroxides and oxides enriched in Cr, an inner oxide layer. The film formed in high-temperature water is similar to that in steam, except for missing the Ni-rich hydroxides layer. Samples with different surface finishes (electropolished, mechanically polished, ground, and as-received) were prepared for comparison. A general increase of the oxide thickness with the degree of surface roughness is observed. The equivalent oxide thicknesses lie in the range of 100-200 nm for the as-received samples, 150-250 nm for the samples ground to 400# and 10-20 nm for the samples ground to 1500#, mechanically polished, and electropolished.
基金supported by the National Natural Science Foundation of China (Nos. 51471166, 51131006 and 51171119)the College Youth Scholar Fostering Program of Liaoning Province (No. LJQ2014015)
文摘In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2X5 coating exhibited a wider and stable passive region with lower passive current density in the potentiodynamic polarization and showed a considerably lower current density at different anodic potentials in the potentiostatic polarization.In order to understand the passivation mechanism of the Fe-based amorphous coating,the components of the passive films formed at various polarization potentials were examined by X-ray photoelectron spectroscopy.The synergistic effect of Mo,W,Mn and Cr in the passive films was systemically analyzed.It has been revealed that Mo and W facilitate the formation of compact and stable Cr2O3 passive film at lower potentials,and the substantial enrichment of Mn in the passive film enhances the passivation ability at relatively higher potentials.The deep understanding of the passivation characteristics in multicomponent alloy systems could provide a guide for the design of corrosion-resistant amorphous alloy coatings for engineering applications.
基金supported by the National Natural Science Foundation of China (NSFC,No.50990061,50721002)Ministry of Science and Technology,China(No. 2005CCA00900)
文摘g-C3N4/TiO2 composite were prepared by hydrolysis of Ti(OC4Hn9) 4 and the precursors of g-C3N4 at room temperature and annealing in nitrogen atmosphere.X-ray diffraction results revealed that all the products were anatase structure.The chemical nature of O,N of the g-C 3N4/TiO2 were identified by X-ray photoelectron spectroscopy,presenting N-Ti-O and N-Ti-N doping status of the composite.The g-C3N4 /TiO2 composite showed better photocatalytic activity for the UV and visible-light degradation of Rhodamine B.
基金supported by the National Natural Science Foundation of China(No.60937003)
文摘Glass formation range of Bi2O3-B2O3-TeO2 system has been investigated (B2O3 ≤ 40 mol%). Four glasses with compositions xBi2O3-B2O3-(70-x)TeO2 (x = 40, 50, 60 and 70 tool%) have been prepared by using melt quenching technique. The effect of Bi2O3 content on thermal stability, optical properties and structures of these four Bi2O3-B2O3-TeO2 glasses is systematically investigated by inductive coupled plasma emission spectrometer (ICP), differential scanning calorimetry (DSC), Raman spectra and X-ray photoelectron spectroscopy (XPS). It is found that the density, refractive index and optical basicity increase with increasing Bi2O3. The Raman spectra and XPS spectra show that the glass network is mainly constituted by the [BiO6] octahedron, [TeO4] trigonal bipyramidal, [TeO3] trigonal pyramid, [BO3] trigonal pyramid and [B04] tetrahedron structural units. With increasing Bi2O3, the coordination number around B atom changes from 3 to 4 and [TeO4] units are converted to [TeO3] units. Bi5+ ions may exist in Bi2O3-B2O3-TeO2 (BBT) system and their amount grows with increasing Bi2O3 content.
基金supported by Deanship of Scientific Research at King Fahd University of Petroleum and Minerals through internal research grant IN100040
文摘In the present study, gallium nitride thin films were grown by using pulsed laser deposition. After the growth samples were annealed at 400 and 600 ℃ in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was observed by atomic force microscopy. Post-growth annealing results in an improved surface roughness of the films. Chemical analysis of the samples was performed by X-ray photoelectron spectroscopy. Stoichiometric gallium nitride thin films were obtained for the samples annealed at 600 ℃. Optical measurements of the samples were performed to measure the band gap and optical constants of the films. Effect of annealing on the band gap and optical constants of the films was studied.
基金supported by the Engineering and Technology Research Center of Food Preservation,Processing and Safety Control of Liaoning Province,Food Safety Key Lab of Liaoning Province (LNSAKF2011027)Key Laboratory Project of Department of Education of Liaoning Province (2009s004)
文摘TiO2 nanoparticles have been synthesized by using a TiO2@NaCl core-shell structure as the precursor. The surface defects were well preserved by the NaCl shell, and therefore high oxygen adsorption capacity was observed. After the NaC1 shell was removed, the resulting pure TiO2 nanoparticles were of anatase phase and uniform size of around 20-24 nm. The presence of an abundance of surface defects contributes to the high photocatalytic activity of the synthesized materials, and the TiO: mate- rials obtained from the TiO2@NaCl precursor can be used as efficient photocatalysts for degradation of rhodamine B under UV light irradiation.