Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alter...Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.展开更多
In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain a...In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.展开更多
A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular val...A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.展开更多
During calculating the fluid resistence with Herschel-Bulkley formula, the deviation is very large in some regions. In order to decrease the deviation, the optimized parameters of approximate solution are obtained thr...During calculating the fluid resistence with Herschel-Bulkley formula, the deviation is very large in some regions. In order to decrease the deviation, the optimized parameters of approximate solution are obtained through mathematic analysis and 3-D optimization calculation. In the close region of relative radius of the core flow, the continuity of deviation is determined with the limit methods. By analysis, the results indicate that the deviation in the area around the discontinuous nodes is very large; the deviation is the function of fluid parameters, approximate solution parameters and the relative radius of the core flow. While the fluid parameters keep certain, the 3-D figures of the deviation are drawn. The slice plane is used to seek the extremums of multi-peaks surface; The optimized parameters of approximate formula make the approximate formula in the regions of the certain deviation. The available area of relative radius of the core flow increases by 43.2%. It is more valuable for the calculation of flow resistance in pipe transportation.展开更多
In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the ta...In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .展开更多
In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model w...In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.展开更多
The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, pe...The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretica solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical(exact) solution, and the first-order perturbation solution obtained by Walters et al.(Int. J. Impac Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical(exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical(exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.展开更多
Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the ap...Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the approximate output of the resonant gyroscope.The method of small parameter perturbation is used to analyze the approximate solution of the Mathieu equation.The theoretical analysis and the numerical simulations show that the approximate solution of the Mathieu equation is close to the dynamic output characteristics of the resonant gyroscope.The experimental analysis shows that the theoretical curve and the experimental data processing results coincide perfectly,which means that the approximate solution of the Mathieu equation can present the dynamic output characteristic of the resonant gyroscope.The theoretical approach and the experimental results of the Mathieu equation approximate solution are obtained,which provides a reference for the robust design of the resonant gyroscope.展开更多
The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linea...The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.展开更多
In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the pro...The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions (if the uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.展开更多
In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, t...In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.展开更多
In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical...In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.展开更多
The nonlocal symmetry of the mKdV equation is obtained from the known Lax pair; it is successfully localized to Lie point symmetries in the enlarged space by introducing suitable auxiliary dependent variables. For the...The nonlocal symmetry of the mKdV equation is obtained from the known Lax pair; it is successfully localized to Lie point symmetries in the enlarged space by introducing suitable auxiliary dependent variables. For the closed prolongation of the nonlocal symmetry, the details of the construction for a one-dimensional optimal system are presented. Furthermore, using the associated vector fields of the obtained symmetry, we give the reductions by the one-dimensional sub-algebras and the explicit analytic interaction solutions between cnoidal waves and kink solitary waves, which provide a way to study the interactions among these types of ocean waves. For some of the interesting solutions, the figures are given to show their properties.展开更多
This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admi...This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.展开更多
Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux ...Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.展开更多
This paper concerns the weak solutions of some Monge-Amp^re type equa- tions in the optimal transportation theory. The relationship between the Aleksandrov solutions and the viscosity solutions of the Monge-Ampere typ...This paper concerns the weak solutions of some Monge-Amp^re type equa- tions in the optimal transportation theory. The relationship between the Aleksandrov solutions and the viscosity solutions of the Monge-Ampere type equations is discussed. A uniform estimate for solution of the Dirichlet problem with homogeneous boundary value is obtained.展开更多
The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parame...The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.展开更多
A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting...A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.展开更多
In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The pr...In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.展开更多
文摘Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.
文摘In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.
文摘A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.
文摘During calculating the fluid resistence with Herschel-Bulkley formula, the deviation is very large in some regions. In order to decrease the deviation, the optimized parameters of approximate solution are obtained through mathematic analysis and 3-D optimization calculation. In the close region of relative radius of the core flow, the continuity of deviation is determined with the limit methods. By analysis, the results indicate that the deviation in the area around the discontinuous nodes is very large; the deviation is the function of fluid parameters, approximate solution parameters and the relative radius of the core flow. While the fluid parameters keep certain, the 3-D figures of the deviation are drawn. The slice plane is used to seek the extremums of multi-peaks surface; The optimized parameters of approximate formula make the approximate formula in the regions of the certain deviation. The available area of relative radius of the core flow increases by 43.2%. It is more valuable for the calculation of flow resistance in pipe transportation.
文摘In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .
文摘In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.
基金supported by the National Outstanding Young Scientist Foundation of China (Grant 11225213)the Key Subject "Computational Solid Mechanics" of China Academy of Engineering Physics
文摘The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretica solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical(exact) solution, and the first-order perturbation solution obtained by Walters et al.(Int. J. Impac Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical(exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical(exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60927005)the Innovation Foundation of BUAA for Ph. D. Graduates,Chinathe Fundamental Research Funds for the Central Universities,China (Grant No. YWF-10-01-A17)
文摘Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the approximate output of the resonant gyroscope.The method of small parameter perturbation is used to analyze the approximate solution of the Mathieu equation.The theoretical analysis and the numerical simulations show that the approximate solution of the Mathieu equation is close to the dynamic output characteristics of the resonant gyroscope.The experimental analysis shows that the theoretical curve and the experimental data processing results coincide perfectly,which means that the approximate solution of the Mathieu equation can present the dynamic output characteristic of the resonant gyroscope.The theoretical approach and the experimental results of the Mathieu equation approximate solution are obtained,which provides a reference for the robust design of the resonant gyroscope.
基金Under the auspices of National Natural Science Foundation of China(No.40876010)Main Direction Program of Knowledge Innovation Programs of the Chinese Academy of Sciences(No.KZCX2-YW-Q03-08)+3 种基金R & D Special Fund for Public Welfare Industry(meteorology)(No.GYHY200806010)LASG State Key Laboratory Special FundFoundation of Shanghai Municipal Education Commission(No.E03004)Natural Science Foundation of Zhejiang Province(No.Y6090164)
文摘The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.
基金Supported by the National Natural Science Foundation of China under Grant No.40876010the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No.KZCX2-YW-Q03-08+2 种基金the LASG State Key Laboratory Special Fundthe Foundation of Shanghai Municipal Education Commission under Grant No.E03004the Natural Science Foundation of Zhejiang Province under Grant No.Y6090164
文摘In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
文摘The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions (if the uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.
基金Supported by the Research Foundation of Jinan University(04SKZD01).
文摘In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.
文摘In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075055 and 11275072)the Innovative Research Team Program of the National Natural Science Foundation of China(Grant No.61021004)+1 种基金the National High Technology Research and Development Program of China(Grant No.2011AA010101)the Shanghai Knowledge Service Platform for Trustworthy Internet of Things,China(Grant No.ZF1213)
文摘The nonlocal symmetry of the mKdV equation is obtained from the known Lax pair; it is successfully localized to Lie point symmetries in the enlarged space by introducing suitable auxiliary dependent variables. For the closed prolongation of the nonlocal symmetry, the details of the construction for a one-dimensional optimal system are presented. Furthermore, using the associated vector fields of the obtained symmetry, we give the reductions by the one-dimensional sub-algebras and the explicit analytic interaction solutions between cnoidal waves and kink solitary waves, which provide a way to study the interactions among these types of ocean waves. For some of the interesting solutions, the figures are given to show their properties.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10371098 and 10447007the Natural Science Foundation of Shanxi Province of China under Grant No.2005A13
文摘This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.
基金supported by the Research Council of Norway through theprojects Nonlinear Problems in Mathematical Analysis Waves In Fluids and Solids+2 种基金 Outstanding Young Inves-tigators Award (KHK), the Russian Foundation for Basic Research (grant No. 09-01-00490-a) DFGproject No. 436 RUS 113/895/0-1 (EYuP)
文摘Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.
基金supported by National Natural Science Foundation of China(11071119)
文摘This paper concerns the weak solutions of some Monge-Amp^re type equa- tions in the optimal transportation theory. The relationship between the Aleksandrov solutions and the viscosity solutions of the Monge-Ampere type equations is discussed. A uniform estimate for solution of the Dirichlet problem with homogeneous boundary value is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10735030)National Basic Research Program of China (Grant No. 2007CB814800)+1 种基金Ningbo Natural Science Foundation (Grant No. 2008A610017)K.C. Wong Magna Fund in Ningbo University
文摘The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.
基金National Science Fund for Distinguished Young Scholars (No.50725929)National Natural Science Foundation ofChina (No.50539060,50679052)
文摘A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 20080404MS0104)the Young Scientists Fund of Inner Mongolia University of China (Grant No. ND0811)
文摘In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.