期刊文献+
共找到55,763篇文章
< 1 2 250 >
每页显示 20 50 100
The Impact of Big Five Personality Traits on Older Europeans’ Physical Health
1
作者 Eleni Serafetinidou Christina Parpoula 《Journal of Biomedical Science and Engineering》 2024年第2期41-56,共16页
Investigating the role of Big Five personality traits in relation to various health outcomes has been extensively studied. The impact of “Big Five” on physical health is here explored for older Europeans with a focu... Investigating the role of Big Five personality traits in relation to various health outcomes has been extensively studied. The impact of “Big Five” on physical health is here explored for older Europeans with a focus on examining age groups differences. The study sample included 378,500 respondents derived from the seventh data wave of Survey of Health, Aging and Retirement in Europe (SHARE). The physical health status of older Europeans was estimated by constructing an index considering the combined effect of well-established health indicators such as the number of chronic diseases, mobility limitations, limitations with basic and instrumental activities of daily living, and self-perceived health. This index was used for an overall physical health assessment, for which the higher the score for an individual, the worst health level. Then, through a dichotomization process applied to the retrieved Principal Component Analysis scores, a two-group discrimination (good or bad health status) of SHARE participants was obtained as regards their physical health condition, allowing for further con-structing logistic regression models to assess the predictive significance of “Big Five” and their protective role for physical health. Results showed that neuroti-cism was the most significant predictor of physical health for all age groups un-der consideration, while extraversion, agreeableness and openness were not found to significantly affect the self-reported physical health levels of midlife adults aged 50 up to 64. Older adults aged 65 up to 79 were more prone to open-ness, whereas the oldest old individuals aged 80 up to 105 were mainly affected by openness and conscientiousness. . 展开更多
关键词 big Five Personality Traits Physical Health Older Europeans SHARE Principal Component Analysis
下载PDF
Sports Prediction Model through Cloud Computing and Big Data Based on Artificial Intelligence Method
2
作者 Aws I. Abu Eid Achraf Ben Miled +9 位作者 Ahlem Fatnassi Majid A. Nawaz Ashraf F. A. Mahmoud Faroug A. Abdalla Chams Jabnoun Aida Dhibi Firas M. Allan Mohammed Ahmed Elhossiny Salem Belhaj Imen Ben Mohamed 《Journal of Intelligent Learning Systems and Applications》 2024年第2期53-79,共27页
This article delves into the intricate relationship between big data, cloud computing, and artificial intelligence, shedding light on their fundamental attributes and interdependence. It explores the seamless amalgama... This article delves into the intricate relationship between big data, cloud computing, and artificial intelligence, shedding light on their fundamental attributes and interdependence. It explores the seamless amalgamation of AI methodologies within cloud computing and big data analytics, encompassing the development of a cloud computing framework built on the robust foundation of the Hadoop platform, enriched by AI learning algorithms. Additionally, it examines the creation of a predictive model empowered by tailored artificial intelligence techniques. Rigorous simulations are conducted to extract valuable insights, facilitating method evaluation and performance assessment, all within the dynamic Hadoop environment, thereby reaffirming the precision of the proposed approach. The results and analysis section reveals compelling findings derived from comprehensive simulations within the Hadoop environment. These outcomes demonstrate the efficacy of the Sport AI Model (SAIM) framework in enhancing the accuracy of sports-related outcome predictions. Through meticulous mathematical analyses and performance assessments, integrating AI with big data emerges as a powerful tool for optimizing decision-making in sports. The discussion section extends the implications of these results, highlighting the potential for SAIM to revolutionize sports forecasting, strategic planning, and performance optimization for players and coaches. The combination of big data, cloud computing, and AI offers a promising avenue for future advancements in sports analytics. This research underscores the synergy between these technologies and paves the way for innovative approaches to sports-related decision-making and performance enhancement. 展开更多
关键词 Artificial Intelligence Machine Learning Spark Apache big Data SAIM
下载PDF
An Overview of the Application of Big Data in Supply Chain Management and Adaptation in Nigeria
3
作者 Jehoshaphat Jaiye Dukiya 《Journal of Computer and Communications》 2024年第8期37-51,共15页
That the world is a global village is no longer news through the tremendous advancement in the Information Communication Technology (ICT). The metamorphosis of the human data storage and analysis from analogue through... That the world is a global village is no longer news through the tremendous advancement in the Information Communication Technology (ICT). The metamorphosis of the human data storage and analysis from analogue through the jaguars-loom mainframe computer to the present modern high power processing computers with sextillion bytes storage capacity has prompted discussion of Big Data concept as a tool in managing hitherto all human challenges of complex human system multiplier effects. The supply chain management (SCM) that deals with spatial service delivery that must be safe, efficient, reliable, cheap, transparent, and foreseeable to meet customers’ needs cannot but employ bid data tools in its operation. This study employs secondary data online to review the importance of big data in supply chain management and the levels of adoption in Nigeria. The study revealed that the application of big data tools in SCM and other industrial sectors is synonymous to human and national development. It is therefore recommended that both private and governmental bodies should key into e-transactions for easy data assemblage and analysis for profitable forecasting and policy formation. 展开更多
关键词 big Data IoT Optimization Right Data Supply Chain Transport Management
下载PDF
Data Visualization in Big Data Analysis: Applications and Future Trends
4
作者 Wenyi Ouyang 《Journal of Computer and Communications》 2024年第11期76-85,共10页
The advent of the big data era has made data visualization a crucial tool for enhancing the efficiency and insights of data analysis. This theoretical research delves into the current applications and potential future... The advent of the big data era has made data visualization a crucial tool for enhancing the efficiency and insights of data analysis. This theoretical research delves into the current applications and potential future trends of data visualization in big data analysis. The article first systematically reviews the theoretical foundations and technological evolution of data visualization, and thoroughly analyzes the challenges faced by visualization in the big data environment, such as massive data processing, real-time visualization requirements, and multi-dimensional data display. Through extensive literature research, it explores innovative application cases and theoretical models of data visualization in multiple fields including business intelligence, scientific research, and public decision-making. The study reveals that interactive visualization, real-time visualization, and immersive visualization technologies may become the main directions for future development and analyzes the potential of these technologies in enhancing user experience and data comprehension. The paper also delves into the theoretical potential of artificial intelligence technology in enhancing data visualization capabilities, such as automated chart generation, intelligent recommendation of visualization schemes, and adaptive visualization interfaces. The research also focuses on the role of data visualization in promoting interdisciplinary collaboration and data democratization. Finally, the paper proposes theoretical suggestions for promoting data visualization technology innovation and application popularization, including strengthening visualization literacy education, developing standardized visualization frameworks, and promoting open-source sharing of visualization tools. This study provides a comprehensive theoretical perspective for understanding the importance of data visualization in the big data era and its future development directions. 展开更多
关键词 Data Visualization big Data Analysis Artificial Intelligence Interactive Visualization Data-Driven Decision Making
下载PDF
Particle Swarm Optimization-Based Hyperparameters Tuning of Machine Learning Models for Big COVID-19 Data Analysis
5
作者 Hend S. Salem Mohamed A. Mead Ghada S. El-Taweel 《Journal of Computer and Communications》 2024年第3期160-183,共24页
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne... Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results. 展开更多
关键词 big COVID-19 Data Machine Learning Hyperparameter Optimization Particle Swarm Optimization Computational Intelligence
下载PDF
Application Technologies and Challenges of Big Data Analytics in Anti-Money Laundering and Financial Fraud Detection
6
作者 Haoran Jiang 《Open Journal of Applied Sciences》 2024年第11期3226-3236,共11页
As financial criminal methods become increasingly sophisticated, traditional anti-money laundering and fraud detection approaches face significant challenges. This study focuses on the application technologies and cha... As financial criminal methods become increasingly sophisticated, traditional anti-money laundering and fraud detection approaches face significant challenges. This study focuses on the application technologies and challenges of big data analytics in anti-money laundering and financial fraud detection. The research begins by outlining the evolutionary trends of financial crimes and highlighting the new characteristics of the big data era. Subsequently, it systematically analyzes the application of big data analytics technologies in this field, including machine learning, network analysis, and real-time stream processing. Through case studies, the research demonstrates how these technologies enhance the accuracy and efficiency of anomalous transaction detection. However, the study also identifies challenges faced by big data analytics, such as data quality issues, algorithmic bias, and privacy protection concerns. To address these challenges, the research proposes solutions from both technological and managerial perspectives, including the application of privacy-preserving technologies like federated learning. Finally, the study discusses the development prospects of Regulatory Technology (RegTech), emphasizing the importance of synergy between technological innovation and regulatory policies. This research provides guidance for financial institutions and regulatory bodies in optimizing their anti-money laundering and fraud detection strategies. 展开更多
关键词 big Data Analytics Anti-Money Laundering Financial Fraud Detection Machine Learning Regulatory Technology
下载PDF
Optimizing Healthcare Big Data Processing with Containerized PySpark and Parallel Computing: A Study on ETL Pipeline Efficiency
7
作者 Ehsan Soltanmohammadi Neset Hikmet 《Journal of Data Analysis and Information Processing》 2024年第4期544-565,共22页
In this study, we delve into the realm of efficient Big Data Engineering and Extract, Transform, Load (ETL) processes within the healthcare sector, leveraging the robust foundation provided by the MIMIC-III Clinical D... In this study, we delve into the realm of efficient Big Data Engineering and Extract, Transform, Load (ETL) processes within the healthcare sector, leveraging the robust foundation provided by the MIMIC-III Clinical Database. Our investigation entails a comprehensive exploration of various methodologies aimed at enhancing the efficiency of ETL processes, with a primary emphasis on optimizing time and resource utilization. Through meticulous experimentation utilizing a representative dataset, we shed light on the advantages associated with the incorporation of PySpark and Docker containerized applications. Our research illuminates significant advancements in time efficiency, process streamlining, and resource optimization attained through the utilization of PySpark for distributed computing within Big Data Engineering workflows. Additionally, we underscore the strategic integration of Docker containers, delineating their pivotal role in augmenting scalability and reproducibility within the ETL pipeline. This paper encapsulates the pivotal insights gleaned from our experimental journey, accentuating the practical implications and benefits entailed in the adoption of PySpark and Docker. By streamlining Big Data Engineering and ETL processes in the context of clinical big data, our study contributes to the ongoing discourse on optimizing data processing efficiency in healthcare applications. The source code is available on request. 展开更多
关键词 big Data Engineering ETL Healthcare Sector Containerized Applications Distributed Computing Resource Optimization Data Processing Efficiency
下载PDF
The Big Bang as the Creative Force of the Creation of the Universe
8
作者 Avas Khugaev Eugeniya Bibaeva 《Journal of Applied Mathematics and Physics》 2024年第10期3281-3306,共26页
The paper considers the mechanism of the Big Bang energy influence on the creation of space-time fields of four structures of the Universe from the 1st type Ether (the Main Field and three spheres of the Relic). It ex... The paper considers the mechanism of the Big Bang energy influence on the creation of space-time fields of four structures of the Universe from the 1st type Ether (the Main Field and three spheres of the Relic). It explains how the Big Bang energy leads to the processes of “melting” in these structures, generating emergent properties that are different from their properties before the Big Bang. The key role of the Big Bang in completing the process of formation of 70% of DE is emphasized. It is shown that the Big Bang preceded the emergence of the furcation point, which chose several directions for the creation of cosmic matter—it was the combined efforts of these directions that created the visible worlds. The principle of dynamic equilibrium is considered the main criterion of the space-time field, in contrast to other physical fields, which is a necessary prerequisite for the quantization of the gravitational field. A spin particle is introduced, capable of emitting special particles—spitons, the characteristics of which are associated with the topology of the Mobius strip and determine the spinor properties of gravitational fields. The mechanism of interaction of particles of the 2nd type of Ether with the fields of space-time is described, allowing the creation of matter first and then the materiality of visible worlds. At the same time, the role of the “matter-negotiator” in the creation process of visible worlds of the Universe is especially highlighted. Since the new properties of gravitational fields go beyond Einstein’s standard theory of gravity, it is proposed to build a new theory of space-time that generalizes it and has a clear geometric interpretation. The proposed theory is based on the action built on a full set of invariants of the Ricci tensor. Within the framework of the Poincaré theory, the classification of furcation points is considered. The processes at the furcation point are described by the Gauss-Laplace curve, for which the principle of conservation of probability density is introduced when considering the transition at the furcation point to four different directions of development. 展开更多
关键词 big Bang Furcation Point Space-Time Criterion Mobius Strip Spin-Particle Resonance of Place Matter-Negotiator
下载PDF
智能机器人在基层慢性病管理中的应用与挑战
9
作者 张璇 张飞 +1 位作者 李铭麟 王佳贺 《中国全科医学》 CAS 北大核心 2025年第1期7-12,19,共7页
全球慢性病患病率不断上升,给社会的发展和个人健康带来重大挑战。管理慢性病需要长期治疗和监测,对患者的生活方式提出了一定要求。随着人口老龄化和人们生活方式的改变,慢性病防控正变得越发重要。近年来,随着医疗卫生领域科技创新向... 全球慢性病患病率不断上升,给社会的发展和个人健康带来重大挑战。管理慢性病需要长期治疗和监测,对患者的生活方式提出了一定要求。随着人口老龄化和人们生活方式的改变,慢性病防控正变得越发重要。近年来,随着医疗卫生领域科技创新向纵深发展,借助人工智能的智能机器人在医疗领域的应用也逐渐成为国家重要战略方向之一,传统的慢性病管理方法过于依赖医生和患者之间的线下交流,导致医生无法与患者保持长期且有效的沟通和随访,患者病情出现变化时医生可能无法及时发现和监测。此外,传统的慢性病管理方法通常是一种通用化的方法,无法充分考量到每位患者的个体差异。鉴于传统慢性病管理方法的局限性,本文提倡利用智能机器人提供更便捷高效的基层服务。本文认为,通过个性化健康管理方案、辅助医疗诊断、定时提醒服药等功能,使智能机器人能够致力于改善患者生活质量、减轻医疗资源压力,从而推动全球智能化医疗管理的发展。 展开更多
关键词 智能机器人 初级保健 慢性病 健康管理 人工智能 健康大数据
下载PDF
从大数据到大知识:HACE+BigKE 被引量:50
10
作者 吴信东 何进 +1 位作者 陆汝钤 郑南宁 《自动化学报》 EI CSCD 北大核心 2016年第7期965-982,共18页
大数据面向异构自治的多源海量数据,旨在挖掘数据间复杂且演化的关联.随着数据采集存储和互联网技术的发展,大数据分析和应用已成为各行各业的研发热点.本文从大数据的本质特征开始,评述现有的几种大数据模型,包括5V,5R,4P和HACE定理,... 大数据面向异构自治的多源海量数据,旨在挖掘数据间复杂且演化的关联.随着数据采集存储和互联网技术的发展,大数据分析和应用已成为各行各业的研发热点.本文从大数据的本质特征开始,评述现有的几种大数据模型,包括5V,5R,4P和HACE定理,同时从知识建模的角度,介绍一种大数据知识工程模型Big KE来生成大知识,并对大知识的前景进行展望. 展开更多
关键词 大数据 知识挖掘 异构 碎片化知识 在线学习
下载PDF
BigDataBench:开源的大数据系统评测基准 被引量:34
11
作者 詹剑锋 高婉铃 +6 位作者 王磊 李经伟 魏凯 罗纯杰 韩锐 田昕晖 姜春宇 《计算机学报》 EI CSCD 北大核心 2016年第1期196-211,共16页
大数据系统的蓬勃发展催生了大数据基准测试的研究,如何公正地评价不同的大数据系统以及怎样根据需求选取合适的系统成为了热点问题.然而,应用领域的广泛性、数据类型的多样性和数据操作的复杂性使得大数据基准测试集的设计面临很大的挑... 大数据系统的蓬勃发展催生了大数据基准测试的研究,如何公正地评价不同的大数据系统以及怎样根据需求选取合适的系统成为了热点问题.然而,应用领域的广泛性、数据类型的多样性和数据操作的复杂性使得大数据基准测试集的设计面临很大的挑战.现有的相关基准测试工作要么针对某一类特定的应用或软件栈,要么根据流行度主观地选择大数据负载,难以全面覆盖大数据的多样性和复杂性.针对现有工作的不足,文中讨论大数据评测基准需要满足的需求,并研制了一个跨系统、体系结构、数据管理3个领域的大数据基准测试开源程序集——BigDataBench.它覆盖5个典型的应用领域(搜索引擎、电子商务、社交网络、多媒体、生物信息学),包含结构化、半结构化、非结构化的数据类型,涵盖离线分析、交互式分析、在线服务、NoSQL这4种负载类型.目前包含14个真实数据集、3种类型的数据生成工具以及33个负载的不同软件栈实现.BigDataBench已广泛应用到学术界和工业界中,应用案例包括负载分析、体系结构设计、系统优化等.基于BigDataBench,中国信息通信研究院联合中国科学院计算技术研究所、华为等国内外知名公司和科研机构共同制定了国内首个工业标准的大数据平台性能评测标准. 展开更多
关键词 大数据 基准测试 工业标准 测试方法 数据生成 应用案例
下载PDF
基于Bigtable与MapReduce的Apriori算法改进 被引量:22
12
作者 魏玲 魏永江 高长元 《计算机科学》 CSCD 北大核心 2015年第10期208-210,243,共4页
为提高Apriori算法挖掘频繁项目集的效率,引进了Bigtable技术与MapReduce模型来对Apriori算法进行优化,设计出大数据环境下挖掘频繁项目集的新算法BM-Apriori算法。与单纯基于MapReduce模型的Apriori改进算法相比,新算法利用Bigtable的... 为提高Apriori算法挖掘频繁项目集的效率,引进了Bigtable技术与MapReduce模型来对Apriori算法进行优化,设计出大数据环境下挖掘频繁项目集的新算法BM-Apriori算法。与单纯基于MapReduce模型的Apriori改进算法相比,新算法利用Bigtable的时间戳属性代替了键/值对的产生,只需扫描数据库一次即可,节约了模式匹配的时间。同时,BM-Apriori算法在项集列表中新增事务标号列,自动获取事务标号以计算支持度。将BM-Apriori算法在Hadoop平台上进行了实验,结果表明Bigtable技术的融入使得BM-Apriori算法具有更高的效率与可拓展性。 展开更多
关键词 APRIORI算法 大数据
下载PDF
冠脉支架植入后患者血浆big ET-1、NT-proBNP与支架内再狭窄的关系 被引量:11
13
作者 郑阳 刘晓唤 +7 位作者 马维冬 范雅洁 王聪霞 吴皓宇 贾珊 张春艳 胡艳超 葛淼 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2018年第3期332-335,340,共5页
目的探讨血浆大内皮素-1(big ET-1)和氨基末端脑钠肽前体(NT-proBNP)对于冠脉支架内再狭窄(ISR)的预测与诊断价值,以及二者的相关性。方法选择曾行冠脉支架植入术并接受冠状动脉造影(CAG)复查的冠心病患者261例,按造影复查结果分为再狭... 目的探讨血浆大内皮素-1(big ET-1)和氨基末端脑钠肽前体(NT-proBNP)对于冠脉支架内再狭窄(ISR)的预测与诊断价值,以及二者的相关性。方法选择曾行冠脉支架植入术并接受冠状动脉造影(CAG)复查的冠心病患者261例,按造影复查结果分为再狭窄(ISR)组(70例)和无再狭窄(non-ISR)组(191例),测定CAG复查前外周血big ET-1、NT-proBNP及其他血液学指标。结果与non-ISR组相比,ISR组血浆big ET-1和NT-proBNP水平均显著升高(P<0.001)。CAG复查前big ET-1预测ISR的最佳截断值为2.03,灵敏度为55.7%,特异度为91.6%;lg NTproBNP预测ISR的最佳截断值为2.72(相应的NT-proBNP值为624.0),灵敏度为65.7%,特异度为83.2%。相关性分析显示big ET-1和lg NT-proBNP呈显著正相关(r=0.488,P<0.001)。结论血浆big ET-1和NT-proBNP关系密切,并且在预测和诊断ISR方面具有一定价值。 展开更多
关键词 冠心病 支架内再狭窄 血浆大内皮素-1 氨基末端脑钠肽前体 预测价值
下载PDF
三维适形放疗Philips Big Bore CT配合高压注射器的模拟定位技术的应用 被引量:4
14
作者 宁瑞霞 李永利 +2 位作者 师秀国 江珂 张宇 《医疗卫生装备》 CAS 2014年第5期86-87,共2页
目的:探讨Philips Big Bore CT模拟定位机配合强化扫描技术在三维适形放疗中的应用价值。方法:115例患者应用Philips Big Bore CT模拟定位机和安科公司ASA-200高压注射器,使用非离子造影剂进行强化扫描,全程由主管医生陪护。结果:115例... 目的:探讨Philips Big Bore CT模拟定位机配合强化扫描技术在三维适形放疗中的应用价值。方法:115例患者应用Philips Big Bore CT模拟定位机和安科公司ASA-200高压注射器,使用非离子造影剂进行强化扫描,全程由主管医生陪护。结果:115例患者顺利完成CT模拟定位强化扫描,与CT平扫相比良好地显示了肿瘤区(GTV),满足三维适形放疗或三维适形调强放疗精确勾画靶区的要求。结论:三维适形放疗时应用Philips Big Bore CT模拟定位机是完成各种复杂被动体位及同步固定模具扫描的基本保证,同时配合使用高压注射器强化扫描技术是精确勾画肿瘤区(GTV)、提高肿瘤放疗治愈率的有效措施之一。 展开更多
关键词 三维适形放疗 大孔径CT 模拟定位 CT强化扫描
下载PDF
英连金化浊解毒方对慢性萎缩性胃炎癌前病变大鼠PG-ⅠBigET-1、VEGF表达的影响 被引量:3
15
作者 刘启泉 曹鹏飞 +2 位作者 王维 靳凌瑜 苏芳 《辽宁中医药大学学报》 CAS 2012年第4期11-13,共3页
目的:观察英连金化浊解毒方对慢性萎缩性胃炎癌前病变大鼠的作用机理研究。方法:将120只大鼠随机分为空白组、模型组、中药大、中、小剂量组及胃复春组。采用N-甲基-N-硝基N-亚硝基胍(MNNG)溶液自由饮用,乙醇溶液灌胃,配合饥饱失常等综... 目的:观察英连金化浊解毒方对慢性萎缩性胃炎癌前病变大鼠的作用机理研究。方法:将120只大鼠随机分为空白组、模型组、中药大、中、小剂量组及胃复春组。采用N-甲基-N-硝基N-亚硝基胍(MNNG)溶液自由饮用,乙醇溶液灌胃,配合饥饱失常等综合方法诱导造模12周。造模成功后分组治疗,第24周后处死全部实验大鼠进行TUNEL细胞凋亡检测以及胃蛋白酶原Ⅰ(PG-Ⅰ)、内皮素(Big ET-1)、血管内皮细胞生长因子(VEGF)等指标检测观察其改变情况。结果:空白组、中药治疗组、胃复春组与模型组比较血浆Big ET-1含量明显降低,胃黏膜组织VEGF阳性率明显降低,血清PG-Ⅰ含量明显升高,差异均有统计学意义(P<0.05)。结论:英连金化浊解毒方能够降低癌前病变大鼠血浆Big ET-1含量及胃黏膜VEGF蛋白的表达率,提高血清PG-Ⅰ含量,恢复正常胃黏膜及腺体细胞的功能。 展开更多
关键词 胃癌前病变 英连金化浊解毒方 PG-Ⅰ bigET-1 VEGF
下载PDF
城市废弃基础设施的有机重生——波士顿“大开挖”(The Big Dig)项目 被引量:8
16
作者 李晓颖 王浩 《中国园林》 北大核心 2013年第2期20-25,共6页
废弃的基础设施影响着城市发展和人居环境的提高,面临拆除或改造的命运。如何在对废弃的基础设施改建之后,延续其所在的生态环境、空间环境、文化环境等,与城市的可持续发展相结合,是废弃基础设施有机重生的关键所在。结合波士顿"... 废弃的基础设施影响着城市发展和人居环境的提高,面临拆除或改造的命运。如何在对废弃的基础设施改建之后,延续其所在的生态环境、空间环境、文化环境等,与城市的可持续发展相结合,是废弃基础设施有机重生的关键所在。结合波士顿"大开挖"项目,具体探讨有机重生的手法和内容,从中得到一些借鉴,用于指导我国的城市建设。 展开更多
关键词 风景园林 废弃基础设施 有机重生 大开挖
下载PDF
非API标准Big Omega特殊螺纹接头连接性能数值分析 被引量:18
17
作者 许志倩 闫相祯 杨秀娟 《石油矿场机械》 2009年第6期34-39,共6页
以德国非API标准的Big Omega特殊螺纹接头作为研究对象,应用有限元软件ANSYS建立计算力学模型,模拟套管柱接头行为,通过改变螺纹参数(高度、锥度等),计算得出各扣牙相应的最大法向接触应力与最大接头Mises应力。分析螺纹参数变化对扣牙... 以德国非API标准的Big Omega特殊螺纹接头作为研究对象,应用有限元软件ANSYS建立计算力学模型,模拟套管柱接头行为,通过改变螺纹参数(高度、锥度等),计算得出各扣牙相应的最大法向接触应力与最大接头Mises应力。分析螺纹参数变化对扣牙所受应力的影响规律,从而得到Big Omega接头螺纹参数的改变对套管接头连接性能的影响规律,进而为套管柱接头特殊螺纹扣型的选择提供依据,为套管柱设计提供更为有效的参考。 展开更多
关键词 非API标准 连接性能 螺纹参数 big OMEGA
下载PDF
官方统计应如何面对Big Data的挑战 被引量:23
18
作者 郑京平 王全众 《统计研究》 CSSCI 北大核心 2012年第12期3-7,共5页
随着信息化、网络化时代的到来,"Big Data"的浪潮为整个社会带来了信息金矿,也给官方统计带来了挑战。本文对官方统计应该如何正确认识"Big Data",如何积极应对"Big Data"带来的挑战,进行了初步分析,给... 随着信息化、网络化时代的到来,"Big Data"的浪潮为整个社会带来了信息金矿,也给官方统计带来了挑战。本文对官方统计应该如何正确认识"Big Data",如何积极应对"Big Data"带来的挑战,进行了初步分析,给出了明确回答。 展开更多
关键词 海量数据 挑战 官方统计
下载PDF
胃癌及胃癌前病变患者中外周血Big内皮素-1检测的临床意义 被引量:3
19
作者 陈卫珍 滕小军 沈志祥 《检验医学》 CAS 北大核心 2007年第3期335-338,共4页
目的探讨Big内皮素-1(ET-1)在胃癌及胃癌前病变患者外周血中变化的意义。方法应用酶联免疫吸附试验(ELISA)检测50例进展期胃癌、8例早期胃癌、22例胃溃疡、30例慢性萎缩性胃炎患者及20名正常对照者血浆Big ET-1的水平,应用免疫组化法检... 目的探讨Big内皮素-1(ET-1)在胃癌及胃癌前病变患者外周血中变化的意义。方法应用酶联免疫吸附试验(ELISA)检测50例进展期胃癌、8例早期胃癌、22例胃溃疡、30例慢性萎缩性胃炎患者及20名正常对照者血浆Big ET-1的水平,应用免疫组化法检测胃癌及癌前病变中Big ET-1蛋白的表达。结果<2.5 cm胃溃疡组、慢性萎缩性胃炎及早期胃癌、进展期胃癌组的血浆Big ET-1水平均显著高于正常对照组(P<0.01),其中进展期胃癌组的Big ET-1水平显著高于<2.5 cm胃溃疡组、慢性胃炎及早期胃癌组(P<0.01),伴随淋巴结转移组血浆Big ET-1水平显著高于无淋巴结转移者(P<0.01)。胃癌组Big ET-1蛋白的阳性表达率与不典型增生者差异有统计学意义(P<0.01)。结论Big ET-1在外周血中的水平升高是胃癌发生的早期事件,并随着肿瘤的进展而升高。胃癌患者血浆Big ET-1水平的检测可作为预测早期淋巴结转移的潜在指标。 展开更多
关键词 胃癌 big内皮素-1 癌前病变
下载PDF
基于大数据技术的大蒜品质智能化调控研究
20
作者 胡彦军 张彩虹 白燕青 《农机化研究》 北大核心 2025年第1期120-124,共5页
以进一步提升大蒜种植的智能性、品质性为目标,选取大数据处理及应用技术,针对大蒜种植过程的调控系统展开设计。考虑大蒜种芽、种植土壤条件等基础特点,结合不同种植调控下的大蒜培育状况,基于大数据架构平台组成,搭建用于智能化品质... 以进一步提升大蒜种植的智能性、品质性为目标,选取大数据处理及应用技术,针对大蒜种植过程的调控系统展开设计。考虑大蒜种芽、种植土壤条件等基础特点,结合不同种植调控下的大蒜培育状况,基于大数据架构平台组成,搭建用于智能化品质大蒜调控的数据处理模型。设计布局大数据应用的软件控制模块,配置相应的系统硬件结构,重点针对种芽朝向进行调控。展开品质化作业试验,结果表明:基于大数据技术的大蒜品质智能化调控系统设计,能够很好地运用数据计算与处理算法对大蒜种植运动过程各数据进行准确监测,通过及时的调控措施满足种芽朝向调整正确率要求,单粒合格率可达到95.40%,蒜芽漏充率可降低至3.15%,种植效率相对提升了6.37%,具有很好的推广价值。 展开更多
关键词 大蒜种植 大数据架构 软件控制 朝向调整正确率 蒜芽漏充率
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部