In this paper, the entangled mapping approach (EMA) is applied to obtain variable separation solutions of (1+1)-dimensional and (3+1)-dimensional systems. By analysis, we firstly find that there also exists a ...In this paper, the entangled mapping approach (EMA) is applied to obtain variable separation solutions of (1+1)-dimensional and (3+1)-dimensional systems. By analysis, we firstly find that there also exists a common formula to describe suitable physical fields or potentials for these (1+1)-dimensional models such as coupled integrable dispersionless (CID) and shallow water wave equations. Moreover, we find that the variable separation solution of the (3+1)-dimensional Burgers system satisfies the completely same form as the universal quantity U1 in (2+1)-dimensional systems. The only difference is that the function q is a solution of a constraint equation and p is an arbitrary function of three independent variables.展开更多
A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral fo...A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.展开更多
Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.u...Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.展开更多
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
Using elementary integral method, a complete classification of all possible exact traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation is given. Some solutions are new.
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equati...In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.展开更多
Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By fur...Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of t...The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.展开更多
Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based...Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.展开更多
The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, ...The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.展开更多
In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new...In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new Darboux transformation, some new soliton-like solutions of the (1+1)-dimensional HBK system are obtained.展开更多
In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon...In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon-Pempinelli system, which has the extensive physics background, and an abundance of exact solutions is derived from some reduction equations. Based on the derived solutions, the localized structures under the periodic wave background are obtained.展开更多
We investigate a new class of periodic solutions to (2+1)-dimensional KdV equations, by both the linear superposition approach and the mapping deformation method. These new periodic solutions are suitable combinations...We investigate a new class of periodic solutions to (2+1)-dimensional KdV equations, by both the linear superposition approach and the mapping deformation method. These new periodic solutions are suitable combinations of the periodic solutions to the (2+1)-dimensional KdV equations obtained by means of the Jacobian elliptic function method, but they possess different periods and velocities.展开更多
By means of two different Riccati equations with different parameters as subequation in the components of finite rational expansion method, new complexiton solutions for the (1+1)-dimensional dispersive long wave e...By means of two different Riccati equations with different parameters as subequation in the components of finite rational expansion method, new complexiton solutions for the (1+1)-dimensional dispersive long wave equation are successfully constructed, which include various combination of trigonometric periodic and hyperbolic function solutions, various combination of trigonometric periodic and rational function solutions, and various combination of hyperbolic and rational function solutions.展开更多
A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensio...A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.展开更多
An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, lin...An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.展开更多
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain...A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.展开更多
基金The authors express their sincere thanks to the anonymous referees for their constructive suggestions and kind help.
文摘In this paper, the entangled mapping approach (EMA) is applied to obtain variable separation solutions of (1+1)-dimensional and (3+1)-dimensional systems. By analysis, we firstly find that there also exists a common formula to describe suitable physical fields or potentials for these (1+1)-dimensional models such as coupled integrable dispersionless (CID) and shallow water wave equations. Moreover, we find that the variable separation solution of the (3+1)-dimensional Burgers system satisfies the completely same form as the universal quantity U1 in (2+1)-dimensional systems. The only difference is that the function q is a solution of a constraint equation and p is an arbitrary function of three independent variables.
文摘A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx 16
文摘Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
基金The project supported by Scientific Research Fund of Heilongjiang Province of China under Grant No. 11511008The author would like to thank referees for their valuable suggestions.
文摘Using elementary integral method, a complete classification of all possible exact traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation is given. Some solutions are new.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000 .
文摘In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672147) and Natural Science Foundation of Zhejiang Forestry University, China (Grant No 2006FR035). Acknowledgments The authors are indebted to Professor Zhang J F for his helpful suggestions and fruitful discussions, and also express their sincere thanks to the editors and the anonymous referees for their constructive suggestions and kind help.
文摘Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
文摘The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.
基金The project supported by the Natural Science Foundation of Inner Mongolia under Grant No. 200408020113 and National Natural Science Foundation of China under Grant No. 40564001
文摘Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604036 and State Key Laboratory of 0il/Gas Reservoir Geology and Exploitation "PLN0402" The authors would like to thank Prof. Sen-Yue Lou for his help and discussion.
文摘The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.
基金The project partially supported by the State Key Basic Pesearch Program of China under Grant No. 2004CB318000
文摘In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new Darboux transformation, some new soliton-like solutions of the (1+1)-dimensional HBK system are obtained.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant No. Y604106 and the Natural Science Foundation of Zhejiang Lishui University under Grant No. FC06001
文摘In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon-Pempinelli system, which has the extensive physics background, and an abundance of exact solutions is derived from some reduction equations. Based on the derived solutions, the localized structures under the periodic wave background are obtained.
基金国家自然科学基金,Research Foundation for Young Skeleton Teacher in College of Zhejiang Province,the Science Research Foundation of Huzhou University
文摘We investigate a new class of periodic solutions to (2+1)-dimensional KdV equations, by both the linear superposition approach and the mapping deformation method. These new periodic solutions are suitable combinations of the periodic solutions to the (2+1)-dimensional KdV equations obtained by means of the Jacobian elliptic function method, but they possess different periods and velocities.
基金The project supported by China Postdoctoral Science Foundation, Natural Science Foundation of Zhejiang Province of China under Grant No. Y604056, and Doctor Foundation of Ningbo City under Grant No. 2005A610030
文摘By means of two different Riccati equations with different parameters as subequation in the components of finite rational expansion method, new complexiton solutions for the (1+1)-dimensional dispersive long wave equation are successfully constructed, which include various combination of trigonometric periodic and hyperbolic function solutions, various combination of trigonometric periodic and rational function solutions, and various combination of hyperbolic and rational function solutions.
基金The project supported in part by National Natural Science Foundation of China under Grant No. 10272071 and the Science Research Foundation of Huzhou University under Grant No. KX21025
文摘A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.
文摘An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112, 10871040) Acknowledgement The authors are in debt to thank the helpful discussions with Prof Qin and Dr A P Deng.
文摘A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.