In this study, we used a mixture of organic liquid propane-1,3-diol and ionic liquid 1-ethyl-3-methylimidazolium chloride([emim]Cl) as the entrainer to separate tert-butyl alcohol(TBA) + water. We measured the isobari...In this study, we used a mixture of organic liquid propane-1,3-diol and ionic liquid 1-ethyl-3-methylimidazolium chloride([emim]Cl) as the entrainer to separate tert-butyl alcohol(TBA) + water. We measured the isobaric vapor–liquid equilibrium(VLE) for the quaternary system TBA + water + propane-1,3-diol + [emim]Cl at 101.3 kPa, and found the VLE data to be well correlated with the nonrandom two-liquid model. These results show that the mixed solvent of propane-1,3-diol + [emim]Cl can increase the relative volatility of TBA to water and break the azeotropic point. We found no notable synergetic effect between them, and observed that the liquid mixed solvent of propane-1,3-diol and [emim]Cl had lower viscosity than [emim]Cl, which makes it a promising entrainer for separating the TBA + water azeotrope in industrial applications.展开更多
Regenerated cellulose/amylopectin blend fibers with controlled biodegradation were produced using dry-jet wet-spinning technology from cellulose/amylopectin/1-butyl-3-methylimidazolium chloride blends.Morphological,st...Regenerated cellulose/amylopectin blend fibers with controlled biodegradation were produced using dry-jet wet-spinning technology from cellulose/amylopectin/1-butyl-3-methylimidazolium chloride blends.Morphological,structural and chemical analyses revealed that dense,homogeneous and void-free blend fibers were prepared in a two-stage dissolution process.The blend fibers were regenerated from water and treated with water or 95%(volume fraction)ethanol.However,cellulose-amylopectin interactions caused crystalline rearrangements in the blend fibers,resulting in a general decrease in crystallinity.Generally,tensile properties decreased with increasing amylopectin content,except that the blend fibers with 10%(mass fraction)amylopectin exhibited higher tensile strength than the regenerated cellulose control fibers.Ethanol treatment reduced the hydrophilicity of the blend fibers,increasing the crystallinity of the blend fibers.The blend fibers exhibited remarkable degradation,directly proportional to the amylopectin content.Despite higher crystallinity,ethanol-treated blend fibers degraded faster than water-treated fibers,indicating amylopectin and ethanol regulated the degradation.展开更多
Poly[ 2, 2-(m.phenylene) -5, 5-bibenzimidazole] (mPBI) were synthesized by mixing 3, 3', 4, 4'-tetraaminobiphenyl and isophthallc acid in 1 -butyl-3 -methyUmidazolinm chloride ( E BMIM] CI). Intrinsic viscosit...Poly[ 2, 2-(m.phenylene) -5, 5-bibenzimidazole] (mPBI) were synthesized by mixing 3, 3', 4, 4'-tetraaminobiphenyl and isophthallc acid in 1 -butyl-3 -methyUmidazolinm chloride ( E BMIM] CI). Intrinsic viscosity of mPBI polymers was 0.67 dL/g which was measured in 96% sulfuric acid. The polymer was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance ( 1H-NMR ), and thermogravimetric analysis (TGA). The effects of polymerization conditions on the intrinsic viscosity of mPBI were investigated. It showed that the molecular weight of polymer mainly depended on pre-reaction time and reaction temperature. Comparison of structure and properties of mPBI synthesized in ionic liquids(ILs) and polyphosphoric acid was also reported. It indicates that the ionic liquids are a kind of good solvents in synthesis process of m_PBI and ionic liquids mainly affect molecular weight of mPBL展开更多
This scale-up study demonstrated the feasibility of an ionic liquid(IL)pretreatment process at 40 kg scale,using the IL 1-ethyl-3-methylimidazolium acetate([C2C1Im][OAc])as the solvent.The pretreatment was followed by...This scale-up study demonstrated the feasibility of an ionic liquid(IL)pretreatment process at 40 kg scale,using the IL 1-ethyl-3-methylimidazolium acetate([C2C1Im][OAc])as the solvent.The pretreatment was followed by enzymatic hydrolysis through which the process efficiency for biomass conversion to monomeric sugars was determined.The results show that 43 wt%of switchgrass was dissolved in IL after 2 h of pretreatment at 160℃ with 15 wt%solid loading.A 120 h enzymatic hydrolysis of the pretreated switchgrass results in 96%glucan and 98%xylan conversion.[C2C1Im][OAc]pretreatment has been successfully scaled up to 40 kg with improved sugar titers and yields relative to bench scale(6 kg).The mass flow of the overall process was established and the major scale-up challenges of the process were identified.展开更多
This paper reports the ab initio and Density Functional Theory (DFT) studies on the structure of the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM]+[PF6]-). Hartree-Fock (HF) and DFT(B3LYP) metho...This paper reports the ab initio and Density Functional Theory (DFT) studies on the structure of the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM]+[PF6]-). Hartree-Fock (HF) and DFT(B3LYP) methods are respectively used to obtain the stable structure of the gas phase ion pair at the 6-311++G(d, p) basis set level. The theoretical IR spectra of [EMIM]+[PF6]- were obtained from the calculated vibrational frequencies and intensities. The changes of atomic charge population have been investigated using Natural Bond Orbital (NBO) analysis. The computational results show that there may exist hydrogen bonds between the cation and the anion. After ZPE and BSSE corrections, the interaction energy between the cation and the anion is –314.44 kJ?mol-1.展开更多
This study aims at investigating the impact of ionic liquid extraction on lignin structure by studying the mechanism of lignin depolymerization in 1-ethyl-3-methylimidazolium acetate EMIM[OAc]) and comparing it with t...This study aims at investigating the impact of ionic liquid extraction on lignin structure by studying the mechanism of lignin depolymerization in 1-ethyl-3-methylimidazolium acetate EMIM[OAc]) and comparing it with that of organosolv and milled wood methods. Ionic liquid mediated lignin (ILL) using EMIM[OAc]), ethanol organosolv lignin (EOL) and milled wood lignin (MWL) were isolated from Typha capensis (TC) and subjected to several analytical characterizations. Experimental data shows that ILL exhibited a relatively lower degree of condensation, lower aromatic C-C structures and a higher aliphatic OH with values of 0.42/Ar, 1.94/Ar and 1.33/Ar moieties compared with EOL values of 0.92/Ar, 2.22/Ar and 0.51/Ar moieties respectively. The ILL was depolymerized under mild conditions giving relatively higher β-aryl ether linkages content, higher molecular mass, and exhibited closer structures and reactivity to native lignin than EOL. These insights on TC lignin depolymerization in EMIM[OAc]) acetate may contribute to better value-addition of lignocellulosic biomass.展开更多
The Hartree-Fock method has been employed to investigate the electronic structures of EMIM+(1- ethyl-3-methylimidazolium+), AlCl4^-, and EMIM+-AlCl4^-. Full optimization and frequency analyses of EMIM+, AlCl4^-,...The Hartree-Fock method has been employed to investigate the electronic structures of EMIM+(1- ethyl-3-methylimidazolium+), AlCl4^-, and EMIM+-AlCl4^-. Full optimization and frequency analyses of EMIM+, AlCl4^-, ten initial EMIM+-AlCl4^- geometries have been carried out using the Gaussian-94 soft-package at 6- 31+G(d,p) basis set level for hydrogen, carbon, nitrogen, chlorine, and aluminum atoms. The electronic structures of the lowest energy of EMIM+-AlCl4^-pairs, single EMIM^+, and AlCl4^- have been comparatively studied. The calculated results showed that the optimized EMIM^+-AlCl4^-pair conformer of lowest energy was AlCl4^-outside the five-ring plane between methyl group and ethyl group with a H6--C122 distance of 2.7 A. The frequency analyses suggested that all stationary points were minimum points because of no imaginary frequency appearing, and the assigned frequencies were in agreement with experimental report. The interaction energy between EMIM^+ and AlCl4^-was 776.2 kJ/mol.展开更多
The density functional theory (DFT) has been employed to investigate the electronic structures ofEMIM^+(1-ethyl-3-methylimidazolium+), CuCl2^-, Cu2Cl3^- and EMIM^+-CuCl2^-, EMIM^+-Cu2Cl3^- pairs. Full optimiza...The density functional theory (DFT) has been employed to investigate the electronic structures ofEMIM^+(1-ethyl-3-methylimidazolium+), CuCl2^-, Cu2Cl3^- and EMIM^+-CuCl2^-, EMIM^+-Cu2Cl3^- pairs. Full optimization and frequency analyses of EMIM^+, CuCl2^-, Cu2Cl3^-, eight initial EMIM^+-CuCl2^-, and six initial EMIM^+-Cu2Cl3^- geometries have been carried out using Gaussian-94 software-package at 6-3 I+G (d, p) basis set level for hydrogen, carbon, nitrogen, chlorine atoms and the Hay-Wadt effective core potential for copper atoms. The electronic structures of the lowest energy of EMIM^+-CuCl2^-, EMIM^+-Cu2Cl3^- pairs, single EMIM^+, CuCl2^-, and Cu2Cl3^- have been comparatively studied. The calculated results showed that the optimized EMIM^+-CuCl2^- pair conformer of the lowest energy was five ring moiety parallel to CuCl2^- plane with a distance of around 3.5,A, while EMIM^+-Cu2Cl3^- pair conformer of the lowest energy was five ring moiety of EMIM^+ perpendicular to Cu2Cl3^- plane with a distance of around 3.0 ,A between terminal chlorine atoms and 5-ring plane of EMIM^+. The cohesion between cation and anion is electrostatic interaction and C-H---Cl hydrogen bonds are reinforced by charge assistance. The frequency analyses suggested that all stationary points are minimum points because of absence of imaginary frequency. The low energy of interaction caused by bulky asymmetry of EMIM^+, and charge dispersion of cation and anion give rise to low melting point of ionic liquids EMIM^+-CuCl2^-, and EMIM^+-Cu2Cl3^- . The interaction energy caused by the distance between cations and anions was investigated by single point energy scan.展开更多
The anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride (AIC13-EMIC) ionic liquid was investigated by conducting linear sweep voltammeter and chonopotentiometry. The viscosity of Nd di...The anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride (AIC13-EMIC) ionic liquid was investigated by conducting linear sweep voltammeter and chonopotentiometry. The viscosity of Nd dissolved ionic liquid and the surface morphologies of Nd were characterized using an Ostwald viscometer and a scanning electron microscope, respectively. The chemical composition of Nd surface was indentified by Raman spectra. The results showed that dissolution of Nd under anodic polarization occurred after the breakdown of oxide films. A viscous layer formed at the interface of Nd/ionic liquid during the galvanostatic process of 5 and 20 mA/cm^2. The formation of viscous layer was attributed to the accumulation of Nd dissolved AlCl3-EMIC ionic liquid, which had high viscosity. The oxide films could be removed thoroughly and the surface of Nd was homogeneous without etching pits, when viscous layer formed in the anodic process. Otherwise, the surface showed a pitting morphology.展开更多
A new type of polymerizable ionic liquid (IL) 1-(3-aminobenzyl)-3-methylimidazolium chloride (AMIC) was synthesized to obtain a novel polymer salt poly(1-(3-aminobenzyl)-3-methylimidazolium chloride) (PAMIC...A new type of polymerizable ionic liquid (IL) 1-(3-aminobenzyl)-3-methylimidazolium chloride (AMIC) was synthesized to obtain a novel polymer salt poly(1-(3-aminobenzyl)-3-methylimidazolium chloride) (PAMIC). The AMIC was structurally characterized by mass spectrometry and Fourier transform infrared spectrometry (FTIR). The structure, morphology and properties of PAMIC were investigated by FTIR, ultraviolet visible absorption spectra (UV-Vis), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), conductivity measurement and thermo- gravimetric analysis (TGA). The PAMIC was spherulitic with an average diameter of about 50 nm and showed high conductivity and excellent thermal stability.展开更多
Leather is a collagen-based biomass prepared from raw skins or hides by a series of unit operations, in which the unhairing and fiber opening are extremely important operations. However, the conventional Na2S/Ca(OH)2 ...Leather is a collagen-based biomass prepared from raw skins or hides by a series of unit operations, in which the unhairing and fiber opening are extremely important operations. However, the conventional Na2S/Ca(OH)2 system used in unhairing and fiber opening has given rise to the pollution to the environment. It is necessary to develop substitute technology for the Na2S/Ca(OH)2. In the present study, 1-allyl-3-methylimidazolium chloride ([AMIm]Cl) was used to cooperate with dispase for cycle unhairing and one-pot beamhouse to recycle waste bovine hides and com-pared with conventional processing. During those processes, the mechanism of [AMIm]Cl-dispase synergistic unhair-ing and collagen fibers opening were studied. Besides, plant hazard, organic matter and [AMIm]Cl of wastewater from [AMIm]Cl-dispase process were respectively investigated and separated to evaluate the environmental and economic benefits of the [AMIm]Cl-dispase process. As a result, enzyme activity after unhairing by [AMIm]Cl-diapase system for using 5 times is higher than that by KCl-dispase system, and needs lower unhairing time, which is because of rapid penetration of [AMIm]Cl-dispase solution in bovine hides. For this reason, the tensile strength and elastic modulus of tanned leather from [AMIm]Cl-dispase process are higher than those from the KCl-diapase and conventional pro-cesses, and its hydrothermal shrinkage temperature is comparable to that of the conventional one. Because of the 58.13% lower wastewater discharge (WD), 66.60% lower total solids (TS), 97.23% lower ammonia nitrogen (NH3-N), non-toxic wastewater and organic matter recovery in wastewater are reached from [AMIm]Cl-dispase process, which is expected to be an alternative to the conventional process to reduce environmental pollution and realize the sustainable development of technology for leather manufacturing.展开更多
The WO_3/C composite was successfully prepared by calcination of a mixture of WO_3 and g-C_3N_4 at 520 ℃. The as-synthesized samples were analyzed by X-ray diffraction(XRD), electronic differential system(EDS), scann...The WO_3/C composite was successfully prepared by calcination of a mixture of WO_3 and g-C_3N_4 at 520 ℃. The as-synthesized samples were analyzed by X-ray diffraction(XRD), electronic differential system(EDS), scanning electron microscopy(SEM), infrared spectrometry(IR) and the Brunner-Emmet-Teller(BET) techniques. The WO_3/C composite, in comparison with the WO_3 and C_3N_4, features smaller particle size, bigger surface area and higher desulphurization performance. The influence of the reaction temperature, the catalyst dosage, the reaction time, the oxidant dosage, the sulfide type and the extractant dose on desulfurization reaction was studied. The results showed that the WO_3/C composite revealed a higher desulfurization activity than the WO_3. The desulfurization rate could reach up to 95.8% under optimal conditions covering a catalyst dosage of 0.02 g, a H_2O_2 amount of 0.2 mL, a 1-ethyl-3-methylimidazolium ethyl sulfate(EMIES) amount of 1.0 mL, a reaction temperature of 70 ℃ and a reaction time of 180 min. After five recycles, the desulfurization activity of catalyst did not significantly decline.展开更多
A highly selective synthesis of 2,6-dimethylnaphthanlene(2,6-DMN) by transalkylation between 2-methylnaphthanlene(2-MN) and 1,2,4,5-tetramethylbenzene(TeMB) was performed with 1-alkyl-3-methylimidazo- lium alumi...A highly selective synthesis of 2,6-dimethylnaphthanlene(2,6-DMN) by transalkylation between 2-methylnaphthanlene(2-MN) and 1,2,4,5-tetramethylbenzene(TeMB) was performed with 1-alkyl-3-methylimidazo- lium aluminum chloride([Cnmim]Cl-AlCl3) ionic liquids(ILs) as catalysts. The influences of the alkyl group as the organic cation, the acidic strength of [C4mim]Cl-AlCl3 ILs as well as the reaction conditions on the catalytic performance were investigated. [C4mim]Cl-AlCl3 ILs[x(AlCl3)=71%] exhibited high activity and selectivity toward 2,6-DMN. The selectivity to 2,6-DMN and the 2,6-DMN/2,7-DMN ratio reached up to 68.2% and 3.7:1, respectively. The UV-Vis spectrum of TeMB treated by different ILs shows that the protonated degree of TeMB dependeds on the acidity strength of ILs, which has a significant impact on the reaction results. The high protonated degree of TeMB is advantageous to enhancing the conversion of transalkylation and the large stereo-hindrance effect of TeMB is favorable to improving the selecivity to 2,6-DMN.展开更多
Phase behaviors of different binary systems involving 1-dodecyl-3-methylimidazolium chlo- ride ([C12mim]Cl) and H20, [C12mim]Cl and different alcohols (1-butanol, 1-pentanol, 1- hexanol and 1-octanol) are investig...Phase behaviors of different binary systems involving 1-dodecyl-3-methylimidazolium chlo- ride ([C12mim]Cl) and H20, [C12mim]Cl and different alcohols (1-butanol, 1-pentanol, 1- hexanol and 1-octanol) are investigated at 25 ℃. Hexagonal liquid crystal phase (H1) is identified in [C12mim]Cl/H2O system, and lamellar liquid-crystalline (Lα) phase is found in [C12mim]Cl/alcohols systems by using polarized optical microscopy and small-angle X-ray scattering techniques. The formation of such phases is considered as a synergetic result of the solvatophobic force and the hydrogen-bonded network comprising an imidazoliuin ring, chloride ion and water (or alcohols), which can be confirmed by Fourier transform infrared spectra. It is noticeable that in [C12mim]Cl/1-octanol system, the lattice spacings of lamellar phase increase with increasing C12mimCl concentration, which is opposite to the results of [C12mim]Cl/H2O system. This may result mainly from stronger static repulsion among hydrophilic headgroups of imidazolium salts arranged in the bilayers of lamellar structures. Further measurements by differential scanning calorimetry indicate that the lamellar phase is stable within a wide temperature range above room temperature. However, the lattice spacings decrease with the increase of temperature, which may. be due to the softening of the hydrocarbon chain of [C12mim]Cl molecules. In different alcohols systems, it is found that the lamellar lyotropic liquid crystal structure is easier to be formed when the carbon chain length becomes longer.展开更多
A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated s...A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93% was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.展开更多
The pretreatment of rice straw is often used to enhance the hydrolysis. 1-allyl-3-methylimidazolium chloride ( [ AMIM ] C1) is a kind of low viscous, nontoxic and recyclable ionic liquid. It was used to treat rice s...The pretreatment of rice straw is often used to enhance the hydrolysis. 1-allyl-3-methylimidazolium chloride ( [ AMIM ] C1) is a kind of low viscous, nontoxic and recyclable ionic liquid. It was used to treat rice straw and improve the enzymatic hydrolysis of rice straw in this study. The factors influencing the pretreatment were as follows: the dosage of rice straw in [ AMIM ] Cl, crush mesh of rice straw, pretreatment temperature and time. After the pretreatment with a 3 % (the weight ratio of rice straw to ionic liquid) rice straw dosage in [AMIM]Cl at 110 ℃ for 1 h, the yield of reducing sugar of regenerated rice straw by 33 U/mL cellulase hydrolysis was 53.3 %, which was two times higher than that of un-treated rice straw (23.7 % ). More researches regarding straw biorefinery to bacterial cellulose are being performed in the lab and prospective results will be published in near future.展开更多
Ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, 1E-3MI-TFB) and HP-β- CD as modifier was added to the buffer to separate hyperoside, luteolin and chlorogenic acid. Experiments explored the effect of co...Ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, 1E-3MI-TFB) and HP-β- CD as modifier was added to the buffer to separate hyperoside, luteolin and chlorogenic acid. Experiments explored the effect of concentration of 1E-3MI-TFB and HP-β-CD on separation. The results indicated that 1.0 mmol/L HP-β-CD and 1%0 (v/v) 1E-3MI-TFB added to the buffer simultaneously could achieve a good compromise of resolution and analysis time. Capillary experiments and UV spectra indicated that there was interaction between 1E-3MI-TFB and analytes.展开更多
基金supported by the Innovation Fund of Tianjin University (No. 2010XJ-0022)
文摘In this study, we used a mixture of organic liquid propane-1,3-diol and ionic liquid 1-ethyl-3-methylimidazolium chloride([emim]Cl) as the entrainer to separate tert-butyl alcohol(TBA) + water. We measured the isobaric vapor–liquid equilibrium(VLE) for the quaternary system TBA + water + propane-1,3-diol + [emim]Cl at 101.3 kPa, and found the VLE data to be well correlated with the nonrandom two-liquid model. These results show that the mixed solvent of propane-1,3-diol + [emim]Cl can increase the relative volatility of TBA to water and break the azeotropic point. We found no notable synergetic effect between them, and observed that the liquid mixed solvent of propane-1,3-diol and [emim]Cl had lower viscosity than [emim]Cl, which makes it a promising entrainer for separating the TBA + water azeotrope in industrial applications.
文摘Regenerated cellulose/amylopectin blend fibers with controlled biodegradation were produced using dry-jet wet-spinning technology from cellulose/amylopectin/1-butyl-3-methylimidazolium chloride blends.Morphological,structural and chemical analyses revealed that dense,homogeneous and void-free blend fibers were prepared in a two-stage dissolution process.The blend fibers were regenerated from water and treated with water or 95%(volume fraction)ethanol.However,cellulose-amylopectin interactions caused crystalline rearrangements in the blend fibers,resulting in a general decrease in crystallinity.Generally,tensile properties decreased with increasing amylopectin content,except that the blend fibers with 10%(mass fraction)amylopectin exhibited higher tensile strength than the regenerated cellulose control fibers.Ethanol treatment reduced the hydrophilicity of the blend fibers,increasing the crystallinity of the blend fibers.The blend fibers exhibited remarkable degradation,directly proportional to the amylopectin content.Despite higher crystallinity,ethanol-treated blend fibers degraded faster than water-treated fibers,indicating amylopectin and ethanol regulated the degradation.
基金Natural Science Foundation of Shanghai,China(No.09ZR1401500)
文摘Poly[ 2, 2-(m.phenylene) -5, 5-bibenzimidazole] (mPBI) were synthesized by mixing 3, 3', 4, 4'-tetraaminobiphenyl and isophthallc acid in 1 -butyl-3 -methyUmidazolinm chloride ( E BMIM] CI). Intrinsic viscosity of mPBI polymers was 0.67 dL/g which was measured in 96% sulfuric acid. The polymer was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance ( 1H-NMR ), and thermogravimetric analysis (TGA). The effects of polymerization conditions on the intrinsic viscosity of mPBI were investigated. It showed that the molecular weight of polymer mainly depended on pre-reaction time and reaction temperature. Comparison of structure and properties of mPBI synthesized in ionic liquids(ILs) and polyphosphoric acid was also reported. It indicates that the ionic liquids are a kind of good solvents in synthesis process of m_PBI and ionic liquids mainly affect molecular weight of mPBL
基金the funding support from The Bioenergy Technologies Office (BETO) within the US DOE’s Office of Energy Efficiency and Renewable Energythe funding support from the American Recovery and Reinvestment Actsupported by the US DOE’s Office of Science, Biological and Environmental Research program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy
文摘This scale-up study demonstrated the feasibility of an ionic liquid(IL)pretreatment process at 40 kg scale,using the IL 1-ethyl-3-methylimidazolium acetate([C2C1Im][OAc])as the solvent.The pretreatment was followed by enzymatic hydrolysis through which the process efficiency for biomass conversion to monomeric sugars was determined.The results show that 43 wt%of switchgrass was dissolved in IL after 2 h of pretreatment at 160℃ with 15 wt%solid loading.A 120 h enzymatic hydrolysis of the pretreated switchgrass results in 96%glucan and 98%xylan conversion.[C2C1Im][OAc]pretreatment has been successfully scaled up to 40 kg with improved sugar titers and yields relative to bench scale(6 kg).The mass flow of the overall process was established and the major scale-up challenges of the process were identified.
基金This work was supported by the National Natural Science Key Foundation of China (20490209) and Young Teacher Foundation of Beijing University of Chemical Technology (QN0308)
文摘This paper reports the ab initio and Density Functional Theory (DFT) studies on the structure of the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM]+[PF6]-). Hartree-Fock (HF) and DFT(B3LYP) methods are respectively used to obtain the stable structure of the gas phase ion pair at the 6-311++G(d, p) basis set level. The theoretical IR spectra of [EMIM]+[PF6]- were obtained from the calculated vibrational frequencies and intensities. The changes of atomic charge population have been investigated using Natural Bond Orbital (NBO) analysis. The computational results show that there may exist hydrogen bonds between the cation and the anion. After ZPE and BSSE corrections, the interaction energy between the cation and the anion is –314.44 kJ?mol-1.
文摘This study aims at investigating the impact of ionic liquid extraction on lignin structure by studying the mechanism of lignin depolymerization in 1-ethyl-3-methylimidazolium acetate EMIM[OAc]) and comparing it with that of organosolv and milled wood methods. Ionic liquid mediated lignin (ILL) using EMIM[OAc]), ethanol organosolv lignin (EOL) and milled wood lignin (MWL) were isolated from Typha capensis (TC) and subjected to several analytical characterizations. Experimental data shows that ILL exhibited a relatively lower degree of condensation, lower aromatic C-C structures and a higher aliphatic OH with values of 0.42/Ar, 1.94/Ar and 1.33/Ar moieties compared with EOL values of 0.92/Ar, 2.22/Ar and 0.51/Ar moieties respectively. The ILL was depolymerized under mild conditions giving relatively higher β-aryl ether linkages content, higher molecular mass, and exhibited closer structures and reactivity to native lignin than EOL. These insights on TC lignin depolymerization in EMIM[OAc]) acetate may contribute to better value-addition of lignocellulosic biomass.
文摘The Hartree-Fock method has been employed to investigate the electronic structures of EMIM+(1- ethyl-3-methylimidazolium+), AlCl4^-, and EMIM+-AlCl4^-. Full optimization and frequency analyses of EMIM+, AlCl4^-, ten initial EMIM+-AlCl4^- geometries have been carried out using the Gaussian-94 soft-package at 6- 31+G(d,p) basis set level for hydrogen, carbon, nitrogen, chlorine, and aluminum atoms. The electronic structures of the lowest energy of EMIM+-AlCl4^-pairs, single EMIM^+, and AlCl4^- have been comparatively studied. The calculated results showed that the optimized EMIM^+-AlCl4^-pair conformer of lowest energy was AlCl4^-outside the five-ring plane between methyl group and ethyl group with a H6--C122 distance of 2.7 A. The frequency analyses suggested that all stationary points were minimum points because of no imaginary frequency appearing, and the assigned frequencies were in agreement with experimental report. The interaction energy between EMIM^+ and AlCl4^-was 776.2 kJ/mol.
文摘The density functional theory (DFT) has been employed to investigate the electronic structures ofEMIM^+(1-ethyl-3-methylimidazolium+), CuCl2^-, Cu2Cl3^- and EMIM^+-CuCl2^-, EMIM^+-Cu2Cl3^- pairs. Full optimization and frequency analyses of EMIM^+, CuCl2^-, Cu2Cl3^-, eight initial EMIM^+-CuCl2^-, and six initial EMIM^+-Cu2Cl3^- geometries have been carried out using Gaussian-94 software-package at 6-3 I+G (d, p) basis set level for hydrogen, carbon, nitrogen, chlorine atoms and the Hay-Wadt effective core potential for copper atoms. The electronic structures of the lowest energy of EMIM^+-CuCl2^-, EMIM^+-Cu2Cl3^- pairs, single EMIM^+, CuCl2^-, and Cu2Cl3^- have been comparatively studied. The calculated results showed that the optimized EMIM^+-CuCl2^- pair conformer of the lowest energy was five ring moiety parallel to CuCl2^- plane with a distance of around 3.5,A, while EMIM^+-Cu2Cl3^- pair conformer of the lowest energy was five ring moiety of EMIM^+ perpendicular to Cu2Cl3^- plane with a distance of around 3.0 ,A between terminal chlorine atoms and 5-ring plane of EMIM^+. The cohesion between cation and anion is electrostatic interaction and C-H---Cl hydrogen bonds are reinforced by charge assistance. The frequency analyses suggested that all stationary points are minimum points because of absence of imaginary frequency. The low energy of interaction caused by bulky asymmetry of EMIM^+, and charge dispersion of cation and anion give rise to low melting point of ionic liquids EMIM^+-CuCl2^-, and EMIM^+-Cu2Cl3^- . The interaction energy caused by the distance between cations and anions was investigated by single point energy scan.
基金Project supported by the National Natural Science Foundation of China(51271166)
文摘The anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride (AIC13-EMIC) ionic liquid was investigated by conducting linear sweep voltammeter and chonopotentiometry. The viscosity of Nd dissolved ionic liquid and the surface morphologies of Nd were characterized using an Ostwald viscometer and a scanning electron microscope, respectively. The chemical composition of Nd surface was indentified by Raman spectra. The results showed that dissolution of Nd under anodic polarization occurred after the breakdown of oxide films. A viscous layer formed at the interface of Nd/ionic liquid during the galvanostatic process of 5 and 20 mA/cm^2. The formation of viscous layer was attributed to the accumulation of Nd dissolved AlCl3-EMIC ionic liquid, which had high viscosity. The oxide films could be removed thoroughly and the surface of Nd was homogeneous without etching pits, when viscous layer formed in the anodic process. Otherwise, the surface showed a pitting morphology.
基金financially supported by the Hunan Provincial Natural Science Foundation of China(Nos.11JJ3015 and 11JJ1009)
文摘A new type of polymerizable ionic liquid (IL) 1-(3-aminobenzyl)-3-methylimidazolium chloride (AMIC) was synthesized to obtain a novel polymer salt poly(1-(3-aminobenzyl)-3-methylimidazolium chloride) (PAMIC). The AMIC was structurally characterized by mass spectrometry and Fourier transform infrared spectrometry (FTIR). The structure, morphology and properties of PAMIC were investigated by FTIR, ultraviolet visible absorption spectra (UV-Vis), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), conductivity measurement and thermo- gravimetric analysis (TGA). The PAMIC was spherulitic with an average diameter of about 50 nm and showed high conductivity and excellent thermal stability.
基金National Natural Science Foundation of China(No.51673177)National Key R&D Program of China(No.2017YFB0308500).
文摘Leather is a collagen-based biomass prepared from raw skins or hides by a series of unit operations, in which the unhairing and fiber opening are extremely important operations. However, the conventional Na2S/Ca(OH)2 system used in unhairing and fiber opening has given rise to the pollution to the environment. It is necessary to develop substitute technology for the Na2S/Ca(OH)2. In the present study, 1-allyl-3-methylimidazolium chloride ([AMIm]Cl) was used to cooperate with dispase for cycle unhairing and one-pot beamhouse to recycle waste bovine hides and com-pared with conventional processing. During those processes, the mechanism of [AMIm]Cl-dispase synergistic unhair-ing and collagen fibers opening were studied. Besides, plant hazard, organic matter and [AMIm]Cl of wastewater from [AMIm]Cl-dispase process were respectively investigated and separated to evaluate the environmental and economic benefits of the [AMIm]Cl-dispase process. As a result, enzyme activity after unhairing by [AMIm]Cl-diapase system for using 5 times is higher than that by KCl-dispase system, and needs lower unhairing time, which is because of rapid penetration of [AMIm]Cl-dispase solution in bovine hides. For this reason, the tensile strength and elastic modulus of tanned leather from [AMIm]Cl-dispase process are higher than those from the KCl-diapase and conventional pro-cesses, and its hydrothermal shrinkage temperature is comparable to that of the conventional one. Because of the 58.13% lower wastewater discharge (WD), 66.60% lower total solids (TS), 97.23% lower ammonia nitrogen (NH3-N), non-toxic wastewater and organic matter recovery in wastewater are reached from [AMIm]Cl-dispase process, which is expected to be an alternative to the conventional process to reduce environmental pollution and realize the sustainable development of technology for leather manufacturing.
基金the financial support of the Natural Science Foundation of China (Project No. 21003069)the Liaoning Province Doctoral Fund (Project No.201501105)
文摘The WO_3/C composite was successfully prepared by calcination of a mixture of WO_3 and g-C_3N_4 at 520 ℃. The as-synthesized samples were analyzed by X-ray diffraction(XRD), electronic differential system(EDS), scanning electron microscopy(SEM), infrared spectrometry(IR) and the Brunner-Emmet-Teller(BET) techniques. The WO_3/C composite, in comparison with the WO_3 and C_3N_4, features smaller particle size, bigger surface area and higher desulphurization performance. The influence of the reaction temperature, the catalyst dosage, the reaction time, the oxidant dosage, the sulfide type and the extractant dose on desulfurization reaction was studied. The results showed that the WO_3/C composite revealed a higher desulfurization activity than the WO_3. The desulfurization rate could reach up to 95.8% under optimal conditions covering a catalyst dosage of 0.02 g, a H_2O_2 amount of 0.2 mL, a 1-ethyl-3-methylimidazolium ethyl sulfate(EMIES) amount of 1.0 mL, a reaction temperature of 70 ℃ and a reaction time of 180 min. After five recycles, the desulfurization activity of catalyst did not significantly decline.
基金Supported by the National Natural Science Foundation of China(No.21076065)the Natural Science Foundation of Heilongjiang Province of China(No.ZD200820-02)the Science&Technology Research Foundation of Education Bureau of Heilongjiang Province,China(No.11531266)
文摘A highly selective synthesis of 2,6-dimethylnaphthanlene(2,6-DMN) by transalkylation between 2-methylnaphthanlene(2-MN) and 1,2,4,5-tetramethylbenzene(TeMB) was performed with 1-alkyl-3-methylimidazo- lium aluminum chloride([Cnmim]Cl-AlCl3) ionic liquids(ILs) as catalysts. The influences of the alkyl group as the organic cation, the acidic strength of [C4mim]Cl-AlCl3 ILs as well as the reaction conditions on the catalytic performance were investigated. [C4mim]Cl-AlCl3 ILs[x(AlCl3)=71%] exhibited high activity and selectivity toward 2,6-DMN. The selectivity to 2,6-DMN and the 2,6-DMN/2,7-DMN ratio reached up to 68.2% and 3.7:1, respectively. The UV-Vis spectrum of TeMB treated by different ILs shows that the protonated degree of TeMB dependeds on the acidity strength of ILs, which has a significant impact on the reaction results. The high protonated degree of TeMB is advantageous to enhancing the conversion of transalkylation and the large stereo-hindrance effect of TeMB is favorable to improving the selecivity to 2,6-DMN.
文摘Phase behaviors of different binary systems involving 1-dodecyl-3-methylimidazolium chlo- ride ([C12mim]Cl) and H20, [C12mim]Cl and different alcohols (1-butanol, 1-pentanol, 1- hexanol and 1-octanol) are investigated at 25 ℃. Hexagonal liquid crystal phase (H1) is identified in [C12mim]Cl/H2O system, and lamellar liquid-crystalline (Lα) phase is found in [C12mim]Cl/alcohols systems by using polarized optical microscopy and small-angle X-ray scattering techniques. The formation of such phases is considered as a synergetic result of the solvatophobic force and the hydrogen-bonded network comprising an imidazoliuin ring, chloride ion and water (or alcohols), which can be confirmed by Fourier transform infrared spectra. It is noticeable that in [C12mim]Cl/1-octanol system, the lattice spacings of lamellar phase increase with increasing C12mimCl concentration, which is opposite to the results of [C12mim]Cl/H2O system. This may result mainly from stronger static repulsion among hydrophilic headgroups of imidazolium salts arranged in the bilayers of lamellar structures. Further measurements by differential scanning calorimetry indicate that the lamellar phase is stable within a wide temperature range above room temperature. However, the lattice spacings decrease with the increase of temperature, which may. be due to the softening of the hydrocarbon chain of [C12mim]Cl molecules. In different alcohols systems, it is found that the lamellar lyotropic liquid crystal structure is easier to be formed when the carbon chain length becomes longer.
基金This study was jointly supported by the National Natural Science Foundation of China(20275003 and 20335010).
文摘A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93% was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.
基金Science and Technology Commission of Shanghai Municipality (No.11230700600No.08520750200)+2 种基金Shanghai Municipal Education Commission (No.09ZZ68)the "111 " Project(No.B07024)the Fundamental Research Funds for the Central Universities and Key Laboratory of Science &Technology of Eco-Textile (Donghua University),Ministry of Education (No.Eco-op-2009-09)
文摘The pretreatment of rice straw is often used to enhance the hydrolysis. 1-allyl-3-methylimidazolium chloride ( [ AMIM ] C1) is a kind of low viscous, nontoxic and recyclable ionic liquid. It was used to treat rice straw and improve the enzymatic hydrolysis of rice straw in this study. The factors influencing the pretreatment were as follows: the dosage of rice straw in [ AMIM ] Cl, crush mesh of rice straw, pretreatment temperature and time. After the pretreatment with a 3 % (the weight ratio of rice straw to ionic liquid) rice straw dosage in [AMIM]Cl at 110 ℃ for 1 h, the yield of reducing sugar of regenerated rice straw by 33 U/mL cellulase hydrolysis was 53.3 %, which was two times higher than that of un-treated rice straw (23.7 % ). More researches regarding straw biorefinery to bacterial cellulose are being performed in the lab and prospective results will be published in near future.
基金the National Natural Science Foundation of China (No. 20175025, 29875027, 20235010).
文摘Ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, 1E-3MI-TFB) and HP-β- CD as modifier was added to the buffer to separate hyperoside, luteolin and chlorogenic acid. Experiments explored the effect of concentration of 1E-3MI-TFB and HP-β-CD on separation. The results indicated that 1.0 mmol/L HP-β-CD and 1%0 (v/v) 1E-3MI-TFB added to the buffer simultaneously could achieve a good compromise of resolution and analysis time. Capillary experiments and UV spectra indicated that there was interaction between 1E-3MI-TFB and analytes.