The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized b...The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized by ICP-AES, BET and TPR. The results demonstrated that the dehydrogenation was improved by addition of chromium promoter. The selectivity of 2-methylpyrazine reached 84.75%, while the conversions of reactants were also enhanced.展开更多
The mechanism of 2-cyanopyrazine prepared from 2-methylpyrazine (2-MP) by catalytic ammoxidation has been explained by the theory of appropriate structure of group. A new catalyst of MoVPO was developed. The effects...The mechanism of 2-cyanopyrazine prepared from 2-methylpyrazine (2-MP) by catalytic ammoxidation has been explained by the theory of appropriate structure of group. A new catalyst of MoVPO was developed. The effects of catalyst promoter phosphorus and supports were investigated. The catalyst containing P, V and Mo in molar ratio of 1.4 : 1 : 0.02 and supported on activated alumina and prepared by impregnation method exhibits good activity and selectivity. Reaction factors such as reaction temperature, space velocity, feed composition and service life of catalyst were investigated. Optimum reaction conditions (the volume space velocity of 0.2h-1, the reaction temperature of 380 ~C and molar ratio of 1 : 7.8 : 8 : 8 for 2-MP, water, oxygen and ammonia) were obtained. Selectivity of 93% and yield of 86% could be achieved under these conditions.展开更多
芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛...芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。展开更多
文摘The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized by ICP-AES, BET and TPR. The results demonstrated that the dehydrogenation was improved by addition of chromium promoter. The selectivity of 2-methylpyrazine reached 84.75%, while the conversions of reactants were also enhanced.
文摘The mechanism of 2-cyanopyrazine prepared from 2-methylpyrazine (2-MP) by catalytic ammoxidation has been explained by the theory of appropriate structure of group. A new catalyst of MoVPO was developed. The effects of catalyst promoter phosphorus and supports were investigated. The catalyst containing P, V and Mo in molar ratio of 1.4 : 1 : 0.02 and supported on activated alumina and prepared by impregnation method exhibits good activity and selectivity. Reaction factors such as reaction temperature, space velocity, feed composition and service life of catalyst were investigated. Optimum reaction conditions (the volume space velocity of 0.2h-1, the reaction temperature of 380 ~C and molar ratio of 1 : 7.8 : 8 : 8 for 2-MP, water, oxygen and ammonia) were obtained. Selectivity of 93% and yield of 86% could be achieved under these conditions.
文摘芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。