Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area o...Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area of 99.03 m2/g with a pore size of 7.8 nm. Scanning electron microscopy (SEM) and particle size distribution reveal that the diameters of the formed pellets are uniform. Thermogravimetry (TG) analysis result shows that 500 ℃ could be the appropriate temperature for converting Ni(HCO3)2 precursors into NiO via a thermal decomposition process. CO2 and NH3 temperature-programmed desorption results show that Ni(HCO3)2 has explicit acid-base sites. Transmission electron microscopy (TEM) results vividly indicate that the pellets are aggregated by hexagonal platelets and possess porous structures. Ni(HCO3)2 can efficiently catalyze the one-step synthesis of benzoin ethyl ether from benzaldehyde and ethanol, with the conversion ofbenzaldehyde up to 57.5% and nearly 100% selectivity of benzoin ethyl ether.展开更多
Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontam...Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontaminated to 0.09 mg/m^3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s^-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the C1 atom will be destroyed firstly to form CH3CH2S. and .CH2CH2C1 radicals. CH3CH2S. can be decomposed to .C_2H_5 and .S..S can be oxidized to SO_2, while .C_2H_5 can be finally oxidized to CO_2 and H_2O. The C-Cl bond in the .CH_2CH_2C1 radical can be destroyed to form .CH_2CH_2. and .C1, which can be mineralized to CO_2, H_2O and HCl. The H atom in the .CH_2CH_2C1 radical can also be substituted by -C1 to form CHCl_2-CHCl_2.展开更多
Three CeO_2 samples with different morphologies, i.e., cubes, rods, and spindles, were synthesized and investigated for 2-chloroethyl ethyl sulfide(2-CEES) degradation. The samples were characterized using scanning ...Three CeO_2 samples with different morphologies, i.e., cubes, rods, and spindles, were synthesized and investigated for 2-chloroethyl ethyl sulfide(2-CEES) degradation. The samples were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, the Brunauer-Emmett-Teller method, and temperature-programmed CO_2 desorption. It was found that morphologies of CeO_2 could strongly affect the surface properties and the 2-CEES degradation activities. The surface basicity and the continuous 2-CEES degradation activity of spindle-like CeO_2 were much better than those of the other CeO_2 samples, although all the samples had identical chemical compositions. That was benefited by the largest surface area, abundant microcracks, and surface oxygen vacancies of the spindle-like CeO_2.展开更多
Based on an experiment treating benzene and 2-chloroethyl ethyl sulfide (CEES) by pulse corona induced-plasma, the simiarities and differences found in the experimental data and analytical results are analyzed in a ...Based on an experiment treating benzene and 2-chloroethyl ethyl sulfide (CEES) by pulse corona induced-plasma, the simiarities and differences found in the experimental data and analytical results are analyzed in a comparative manner in this paper. The theory applied is also discussed.展开更多
Synthesis and electrochemical polymerization of 9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene (EO-F) into poly[9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene] (EO-PF) films are reported....Synthesis and electrochemical polymerization of 9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene (EO-F) into poly[9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene] (EO-PF) films are reported. The boron trifluoride diethyl etherate electrolyte enables facile preparation of EO-PF films at lower potential compared to LiCIOa/MeCN and the electrochemical polymerizations are discussed. The EO-PF shows good electrochemical behavior and can be dissolved in solvents such as DMSO and THF. The solubility of EO-PF in THF is 2 mg.mL-1 and the number average molecular weight is 35300 with a polydispersity index of 1.65. The side chains on C9 position of the monomer maintain unchanged aRer electrooxidation into corresponding polymer. The EO-PF dissolved in THF under 365 nm ultraviolet light is sky blue light emitting with the Commission Internationale de L'Eclairage-CIE coordinates of (0.19, 0.15). The electropolymerized EO-PF is used for the first time in chemosensing metal ions, demonstrating fluorescence quenching for Mn2+ and Fe3+ while fluorescence enhancement for Cr6+ ions.展开更多
基金Project(50872086)supported by the National Natural Science Foundation of ChinaProject(2012021006-3)supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(2012L022)supported by Special/Youth Foundation of Taiyuan University of Technology,ChinaProject(20120321033-02)supported by Science and Technology Research of Shanxi Province,China
文摘Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area of 99.03 m2/g with a pore size of 7.8 nm. Scanning electron microscopy (SEM) and particle size distribution reveal that the diameters of the formed pellets are uniform. Thermogravimetry (TG) analysis result shows that 500 ℃ could be the appropriate temperature for converting Ni(HCO3)2 precursors into NiO via a thermal decomposition process. CO2 and NH3 temperature-programmed desorption results show that Ni(HCO3)2 has explicit acid-base sites. Transmission electron microscopy (TEM) results vividly indicate that the pellets are aggregated by hexagonal platelets and possess porous structures. Ni(HCO3)2 can efficiently catalyze the one-step synthesis of benzoin ethyl ether from benzaldehyde and ethanol, with the conversion ofbenzaldehyde up to 57.5% and nearly 100% selectivity of benzoin ethyl ether.
基金supported by State Key Laboratory of NBC Protection for Civilian,China
文摘Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontaminated to 0.09 mg/m^3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s^-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the C1 atom will be destroyed firstly to form CH3CH2S. and .CH2CH2C1 radicals. CH3CH2S. can be decomposed to .C_2H_5 and .S..S can be oxidized to SO_2, while .C_2H_5 can be finally oxidized to CO_2 and H_2O. The C-Cl bond in the .CH_2CH_2C1 radical can be destroyed to form .CH_2CH_2. and .C1, which can be mineralized to CO_2, H_2O and HCl. The H atom in the .CH_2CH_2C1 radical can also be substituted by -C1 to form CHCl_2-CHCl_2.
基金supported by the National Key Research and Development Program of China(2016YFC0205001)
文摘Three CeO_2 samples with different morphologies, i.e., cubes, rods, and spindles, were synthesized and investigated for 2-chloroethyl ethyl sulfide(2-CEES) degradation. The samples were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, the Brunauer-Emmett-Teller method, and temperature-programmed CO_2 desorption. It was found that morphologies of CeO_2 could strongly affect the surface properties and the 2-CEES degradation activities. The surface basicity and the continuous 2-CEES degradation activity of spindle-like CeO_2 were much better than those of the other CeO_2 samples, although all the samples had identical chemical compositions. That was benefited by the largest surface area, abundant microcracks, and surface oxygen vacancies of the spindle-like CeO_2.
基金This project supported by the Dean's Research Foundation of the Institute of Chemical Defense
文摘Based on an experiment treating benzene and 2-chloroethyl ethyl sulfide (CEES) by pulse corona induced-plasma, the simiarities and differences found in the experimental data and analytical results are analyzed in a comparative manner in this paper. The theory applied is also discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.50903078,21274134)New Century Excellent Talents in Universities(No.NCET-11-0473)
文摘Synthesis and electrochemical polymerization of 9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene (EO-F) into poly[9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene] (EO-PF) films are reported. The boron trifluoride diethyl etherate electrolyte enables facile preparation of EO-PF films at lower potential compared to LiCIOa/MeCN and the electrochemical polymerizations are discussed. The EO-PF shows good electrochemical behavior and can be dissolved in solvents such as DMSO and THF. The solubility of EO-PF in THF is 2 mg.mL-1 and the number average molecular weight is 35300 with a polydispersity index of 1.65. The side chains on C9 position of the monomer maintain unchanged aRer electrooxidation into corresponding polymer. The EO-PF dissolved in THF under 365 nm ultraviolet light is sky blue light emitting with the Commission Internationale de L'Eclairage-CIE coordinates of (0.19, 0.15). The electropolymerized EO-PF is used for the first time in chemosensing metal ions, demonstrating fluorescence quenching for Mn2+ and Fe3+ while fluorescence enhancement for Cr6+ ions.