The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more t...The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter’s relation, Bath’s law, Omori’s law, and Well’s relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter’s relation, and the modified form of Omori’s law are confirmed based on the aftershock sequence data from the Mw9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.展开更多
This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the ...This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the earthquake reflecting abilities of well holes at different measurement points. This is achieved through the analysis of the co-seismic responses to the Wenchuan (2008; Ms8.0, China) and Tohoku (2011; Ms9.0, Japan) earthquakes. We found that the co-seismic response of water level from regional well holes in Jiangsu Province was stronger than that of water temperature. The water-level co-seismic response follows a consistent law and is closely related to the earthquake magnitude. The co-seismic response of water temperature strongly varied among well points, and was more often manifested as a slow restorative change. The co-seismic responses also varied based on tectonic elements. The response in central and northern Jiangsu was weaker than that of southern Jiangsu, possibly due to the thicker loess cover layer in central Jiangsu which makes it less effective at capturing the micro-changes of stress-strain states relative to the hilly land in the south. The more complicated geological structure in southern Jiangsu makes it contribute to greater changes in the state of underground water after a minor disturbance.展开更多
The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions ca...The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.展开更多
On March 11,2011, a M_W9.0 earthquake occurred in the Japan Trench, causing tremendous casualties,and attracting extensive concern. Based on the results of related research,this paper analyzes the observations,phenome...On March 11,2011, a M_W9.0 earthquake occurred in the Japan Trench, causing tremendous casualties,and attracting extensive concern. Based on the results of related research,this paper analyzes the observations,phenomena and understandings of the earthquake from varied aspects,and obtains four main conclusions.(1) The earthquake,occurring in the subduction zone in the Japan Trench located in the northwest boundary of the pacific plate has two zones of concentrated coseismic slip at different depths,and the slip in the deep zone is relatively small. Though there have been many M7. 0 historical earthquakes,slips in the shallow zone are large,but there have been few historical strong earthquakes.(2) Constrained by GPS data,the study of fault movement shows that fault movement in the Japan Trench has a background of widely distributed stability and locking( the locking zone is equivalent that of coseismic rupture zone). Perturbation occurred after the 2008 M8. 0 Hokkaido earthquake,several M7. 0 events had after slips larger than the coseismic slip,and two obvious slow slip events were recorded in 2008 and2011. Eventually,the March 9,2011 M7. 0 foreshock and the March 11,2011 M_W9.0 mainshock occurred. The pre-earthquake changing of the fault movement in the Japan Trench is quite clear.(3) Traditional precursory observation show no obvious anomaly,possibly due to monitoring reason. Anomaly before earthquake consists of high stress state in focal zone reflected by some seismic activity parameters,short period anomaly in regional ground motion,etc.(4) The analysis of physical property in focal zone aroused more scientific issues,for example,is there obvious difference between physical property in focal zone and its vicinity? Does frictional property of fault determine seismogenic ability and rupture process? Whether pre-earthquake fault movement include pre-slips? Could deep fluid affect fault movement in focal zone? Experience is the best teacher,and authors hope this paper could be a modest spur to induce others in basic research in earthquake forecast and prediction.展开更多
Co-seismic displacements of the 2011 Mw9.0 Japan earthquake recorded by GPS stations in China and surrounding areas showed a movement toward the epicenter. The horizontal displacements were up to 1 - 3 cm in northeast...Co-seismic displacements of the 2011 Mw9.0 Japan earthquake recorded by GPS stations in China and surrounding areas showed a movement toward the epicenter. The horizontal displacements were up to 1 - 3 cm in northeastern China, 3 -8 mm in the North China, and 2 cm in the Korean peninsula. The vertical movements in China were small uplifts.展开更多
Co-seismic line-of-sight displacements of the 2011 Mw9.0 Japan earthquake derived from InSAR data of Envisat ASAR, ALOS PALSAR and TerraSAR-X show a maximum value of about - 245cm to -221cm near the epicenter. This re...Co-seismic line-of-sight displacements of the 2011 Mw9.0 Japan earthquake derived from InSAR data of Envisat ASAR, ALOS PALSAR and TerraSAR-X show a maximum value of about - 245cm to -221cm near the epicenter. This result is in good agreement with the result of GPS measurement. The ob- served displacement pattern suggests an earthquake-rupture zone over 500km long, with a ground-motion pat- tern in the vicinity of the northern segment more complex than that of the southern segment, possibly due to immediate aftershocks that occurred between satellite passes.展开更多
Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layere...Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.展开更多
Giant earthquakes generate rich signals that can be used to explore the characteristics of the hierarchical structure of the Earth’s interior associated with the eigenfrequencies of the Earth.We employ the spectral e...Giant earthquakes generate rich signals that can be used to explore the characteristics of the hierarchical structure of the Earth’s interior associated with the eigenfrequencies of the Earth.We employ the spectral element method,incorporated with large-scale parallel computing technology,to investigate the characteristics of global seismic wave propagation excited by the2011 Mw9.0 Tohoku earthquake.The transversely isotropic PREM model is employed as a prototype of our numerical global Earth model.Topographic data and the effect of the oceans are taken into consideration.Wave propagation processes are simulated by solving three-dimensional elastic wave governing equations with the seismic moment tensor obtained from the Global Centroid Moment Tensor Catalog.Three-dimensional visualization of our computing results displays the nature of the global seismic wave propagation.Comparative analysis of our calculations with observations obtained from the Incorporated Research Institutions for Seismology demonstrates the reliability and feasibility of our numerical results.We compare synthetic seismograms with incorporated and unincorporated ocean models.First results show that the oceans have obvious effects on the characteristics of seismic wave propagation.The peak displacement and peak velocity of P waves become relatively small under the effect of the ocean.However,the effect of the ocean on S-waves is complex.The displacement and velocity of S waves decrease rapidly over time using an unincorporated ocean model.Therefore,the effects of the ocean should be incorporated when undertaking quantitative earthquake hazard assessments on coastal areas.In addition,we undertake comparative analysis on the characteristics of the Earth’s oscillation excited by the 2004 Sumatra-Andaman,2008 Wenchuan,and 2011Tohoku earthquakes that incorporate the effect of the Earth’s gravitational potential.A comparison of the amplitude spectra of the numerical records indicates that energy released by the three big earthquakes is different.Our comparative analysis realizes that the computing results can accurately reproduce some eigenfrequencies of the Earth,such as toroidal modes 0T2 to 0T13and spheroidal modes 0S7 to 0S31.These results demonstrate that numerical simulations can be successfully used to investigate the Earth’s oscillations.We propose that numerical simulations can be used as one of the major tools to further reveal how the Earth’s lateral heterogeneities affect the Earth’s oscillations.展开更多
基金supported by the National Natural Science Foundation of China (No. 51278474)Special Research Project of Earthquake Engineering (No. 201108003)International Science and Technology Cooperation Program of China (No. 2011DFA21460)
文摘The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter’s relation, Bath’s law, Omori’s law, and Well’s relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter’s relation, and the modified form of Omori’s law are confirmed based on the aftershock sequence data from the Mw9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.
基金supported by the Scientific and Technological Support Project of Jiangsu Province (No.BS2007084)Seismic Technology Spark Project (No.XH12020)
文摘This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the earthquake reflecting abilities of well holes at different measurement points. This is achieved through the analysis of the co-seismic responses to the Wenchuan (2008; Ms8.0, China) and Tohoku (2011; Ms9.0, Japan) earthquakes. We found that the co-seismic response of water level from regional well holes in Jiangsu Province was stronger than that of water temperature. The water-level co-seismic response follows a consistent law and is closely related to the earthquake magnitude. The co-seismic response of water temperature strongly varied among well points, and was more often manifested as a slow restorative change. The co-seismic responses also varied based on tectonic elements. The response in central and northern Jiangsu was weaker than that of southern Jiangsu, possibly due to the thicker loess cover layer in central Jiangsu which makes it less effective at capturing the micro-changes of stress-strain states relative to the hilly land in the south. The more complicated geological structure in southern Jiangsu makes it contribute to greater changes in the state of underground water after a minor disturbance.
基金supported by the Research Fund Program of Institute of Seismology, Chinese Earthquake Administration (IS201226045)the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (SKLGED2013-3-7-E)the National Natural Science Foundation of China (41404065)
文摘The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.
基金sponsored by the Special Fund for Earthquake Scientific Research(201408019)the Basic Scientific Research Program,Institute of Earth Science,CEA(2016IE0301)
文摘On March 11,2011, a M_W9.0 earthquake occurred in the Japan Trench, causing tremendous casualties,and attracting extensive concern. Based on the results of related research,this paper analyzes the observations,phenomena and understandings of the earthquake from varied aspects,and obtains four main conclusions.(1) The earthquake,occurring in the subduction zone in the Japan Trench located in the northwest boundary of the pacific plate has two zones of concentrated coseismic slip at different depths,and the slip in the deep zone is relatively small. Though there have been many M7. 0 historical earthquakes,slips in the shallow zone are large,but there have been few historical strong earthquakes.(2) Constrained by GPS data,the study of fault movement shows that fault movement in the Japan Trench has a background of widely distributed stability and locking( the locking zone is equivalent that of coseismic rupture zone). Perturbation occurred after the 2008 M8. 0 Hokkaido earthquake,several M7. 0 events had after slips larger than the coseismic slip,and two obvious slow slip events were recorded in 2008 and2011. Eventually,the March 9,2011 M7. 0 foreshock and the March 11,2011 M_W9.0 mainshock occurred. The pre-earthquake changing of the fault movement in the Japan Trench is quite clear.(3) Traditional precursory observation show no obvious anomaly,possibly due to monitoring reason. Anomaly before earthquake consists of high stress state in focal zone reflected by some seismic activity parameters,short period anomaly in regional ground motion,etc.(4) The analysis of physical property in focal zone aroused more scientific issues,for example,is there obvious difference between physical property in focal zone and its vicinity? Does frictional property of fault determine seismogenic ability and rupture process? Whether pre-earthquake fault movement include pre-slips? Could deep fluid affect fault movement in focal zone? Experience is the best teacher,and authors hope this paper could be a modest spur to induce others in basic research in earthquake forecast and prediction.
文摘Co-seismic displacements of the 2011 Mw9.0 Japan earthquake recorded by GPS stations in China and surrounding areas showed a movement toward the epicenter. The horizontal displacements were up to 1 - 3 cm in northeastern China, 3 -8 mm in the North China, and 2 cm in the Korean peninsula. The vertical movements in China were small uplifts.
基金supported by the National Natural Science Foundation of China(41004008)Key Foundation of Institute of Seismology,China Earthquake Administration (IS201026019)+2 种基金State Key Laboratory of Cryospheric Sciences,Cold and Arid Regions Environment and Engineering Research Institute,Chinese Academy Sciences(SKL CS09-03)the Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University (2009B54)the Director Foundation of Institute of Seismology,China Earthquake Administration(IS200826057)
文摘Co-seismic line-of-sight displacements of the 2011 Mw9.0 Japan earthquake derived from InSAR data of Envisat ASAR, ALOS PALSAR and TerraSAR-X show a maximum value of about - 245cm to -221cm near the epicenter. This result is in good agreement with the result of GPS measurement. The ob- served displacement pattern suggests an earthquake-rupture zone over 500km long, with a ground-motion pat- tern in the vicinity of the northern segment more complex than that of the southern segment, possibly due to immediate aftershocks that occurred between satellite passes.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-SW-142)the National Natural Science Foundation of China (41021003, 40974034 and90814009)the Key Project of Earthquake Science (201008007)
文摘Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.
基金supported by the National High Technology Research and Development Program (Grant No. 2010AA012402)the Ministry of Land and Resources Industry Fund (Grant No. SinoProbe-07)+1 种基金China Earthquake Administration Earthquake Industry-Scientific Research Fund (Grant No. 200808077)the Open Foundation of State Key Laboratory of Earthquake Dynamics.
文摘Giant earthquakes generate rich signals that can be used to explore the characteristics of the hierarchical structure of the Earth’s interior associated with the eigenfrequencies of the Earth.We employ the spectral element method,incorporated with large-scale parallel computing technology,to investigate the characteristics of global seismic wave propagation excited by the2011 Mw9.0 Tohoku earthquake.The transversely isotropic PREM model is employed as a prototype of our numerical global Earth model.Topographic data and the effect of the oceans are taken into consideration.Wave propagation processes are simulated by solving three-dimensional elastic wave governing equations with the seismic moment tensor obtained from the Global Centroid Moment Tensor Catalog.Three-dimensional visualization of our computing results displays the nature of the global seismic wave propagation.Comparative analysis of our calculations with observations obtained from the Incorporated Research Institutions for Seismology demonstrates the reliability and feasibility of our numerical results.We compare synthetic seismograms with incorporated and unincorporated ocean models.First results show that the oceans have obvious effects on the characteristics of seismic wave propagation.The peak displacement and peak velocity of P waves become relatively small under the effect of the ocean.However,the effect of the ocean on S-waves is complex.The displacement and velocity of S waves decrease rapidly over time using an unincorporated ocean model.Therefore,the effects of the ocean should be incorporated when undertaking quantitative earthquake hazard assessments on coastal areas.In addition,we undertake comparative analysis on the characteristics of the Earth’s oscillation excited by the 2004 Sumatra-Andaman,2008 Wenchuan,and 2011Tohoku earthquakes that incorporate the effect of the Earth’s gravitational potential.A comparison of the amplitude spectra of the numerical records indicates that energy released by the three big earthquakes is different.Our comparative analysis realizes that the computing results can accurately reproduce some eigenfrequencies of the Earth,such as toroidal modes 0T2 to 0T13and spheroidal modes 0S7 to 0S31.These results demonstrate that numerical simulations can be successfully used to investigate the Earth’s oscillations.We propose that numerical simulations can be used as one of the major tools to further reveal how the Earth’s lateral heterogeneities affect the Earth’s oscillations.