2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock ...2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.展开更多
Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surroundi...Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surrounding the cross-fault tunnel with poor geological conditions has been chosen for the study.The support capacity of 2^(nd) Generation-Negative Poisson’s Ratio(2G-NPR)bolt in an active fault tunnel has been carried out on the basis of relevant results obtained from the geomechanical model test and numerical investigations of failure model for existing unsupported fault tunnel.The investigation shows that surrounding rock of the tunnel is prone to shear deformation and crack formation along the fault,as a result,the rock mass on the upper part of the fault slips as a whole.Furthermore,small-scale deformation and loss of blocks are observed around the tunnel;however,the 2G-NPR bolt support is found to be helpful in keeping the overall tunnel intact without any damage and instability.Due to the blocking effect of fault,the stress of the surrounding rock on the upper and lower parts of the fault is significantly different,and the stress at the left shoulder of the tunnel is greater than that at the right shoulder.The asymmetrical arrangement of 2G-NPR bolts can effectively control the asymmetric deformation and instability of the surrounding rock.The present numerical scheme is in good agreement with the model test results,and can reasonably reflect the stress and displacement characteristics of the surrounding rock of the tunnel.In comparison to unsupported and ordinary PR(Poisson’s Ratio)bolt support,2G-NPR bolt can effectively limit the fault slip and control the stability of the surrounding rock of the fault tunnel.The research findings may serve as a guideline for the use of 2G-NPR bolts in fault tunnel support engineering.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(41941018).
文摘2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.
基金supported by the National Natural Science Foundation of China(NSFC)(41941018)the Program of China Scholarship Council(202106430031)。
文摘Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surrounding the cross-fault tunnel with poor geological conditions has been chosen for the study.The support capacity of 2^(nd) Generation-Negative Poisson’s Ratio(2G-NPR)bolt in an active fault tunnel has been carried out on the basis of relevant results obtained from the geomechanical model test and numerical investigations of failure model for existing unsupported fault tunnel.The investigation shows that surrounding rock of the tunnel is prone to shear deformation and crack formation along the fault,as a result,the rock mass on the upper part of the fault slips as a whole.Furthermore,small-scale deformation and loss of blocks are observed around the tunnel;however,the 2G-NPR bolt support is found to be helpful in keeping the overall tunnel intact without any damage and instability.Due to the blocking effect of fault,the stress of the surrounding rock on the upper and lower parts of the fault is significantly different,and the stress at the left shoulder of the tunnel is greater than that at the right shoulder.The asymmetrical arrangement of 2G-NPR bolts can effectively control the asymmetric deformation and instability of the surrounding rock.The present numerical scheme is in good agreement with the model test results,and can reasonably reflect the stress and displacement characteristics of the surrounding rock of the tunnel.In comparison to unsupported and ordinary PR(Poisson’s Ratio)bolt support,2G-NPR bolt can effectively limit the fault slip and control the stability of the surrounding rock of the fault tunnel.The research findings may serve as a guideline for the use of 2G-NPR bolts in fault tunnel support engineering.