X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. Howe...X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.展开更多
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. There...In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plas...The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.展开更多
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching...The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.展开更多
[Objectives]To observe the effect of motor relearning combined with transcranial direct current stimulation on the motor function of lower extremities in patients with cerebral infarction,and to observe its effect on ...[Objectives]To observe the effect of motor relearning combined with transcranial direct current stimulation on the motor function of lower extremities in patients with cerebral infarction,and to observe its effect on gait by 3D gait analysis.[Methods]60 patients with cerebral infarction who met the inclusion criteria were randomly divided into 3 groups according to the order of treatment(n=20).Group A received motor relearning treatment,group B received transcranial direct current stimulation treatment,group C received motor relearning combined with transcranial direct current stimulation,and the curative effect was observed after 5 courses of treatment.[Results]Before treatment,FMA,MBI,spatio-temporal parameters for 3D gait analysis(gait frequency,gait cycle,stride length,gait speed,stride length deviation,double support)and lower limb joint motion parameters(affected side stride length,maximum hip flexion,maximum hip extension,maximum knee flexion,maximum knee extension,stance phase,swing phase)were compared among the three groups.After treatment,the FMA and MBI of the three groups increased,and the spatio-temporal parameters for 3D gait analysis(gait frequency,gait cycle,gait speed,double support)and the lower limb joint motion parameters(affected side stride length,maximum hip flexion,maximum hip extension,maximum knee flexion,swing phase)were all improved,while the spatio-temporal parameters(stride length and stride length deviation)and the lower limb joint motion parameters(maximum knee extension and stance phase)decreased.Compared with those before treatment,there were significant differences among the three groups(P<0.05).Through the comparison between groups,it was found that the FMA,MBI,spatio-temporal parameters for 3D gait analysis(gait frequency,gait cycle,gait speed,double support)and lower limb joint motion parameters(affected side stride length,maximum hip flexion,maximum hip extension,maximum knee flexion,swing phase)in group C were significantly higher than those in group A and B,while the spatio-temporal parameters(stride length and stride length deviation)and lower limb joint motion parameters(maximum knee extension and stance phase)in group C were significantly lower than those in group A and group B,and the difference was statistically significant(P<0.05).[Conclusions]Motor relearning combined with transcranial direct current stimulation could increase MBI and FMA,improve gait spatio-temporal parameters and lower limb joint motion parameters,and correct abnormal gait in patients with cerebral infarction.展开更多
<span style="font-family:Verdana;">Laser surface hardening is becoming one of the most successful heat treatment processes for improving wear and fatigue properties of steel parts. In this process, the...<span style="font-family:Verdana;">Laser surface hardening is becoming one of the most successful heat treatment processes for improving wear and fatigue properties of steel parts. In this process, the heating system parameters and the material properties have important effects on the achieved hardened surface characteristics. The control of these variables using predictive modeling strategies leads to the desired surface properties without following the fastidious trial and error method. However, when the dimensions of the surface to be treated are larger than the cross section of the laser beam, various laser scanning patterns can be used. Due to their effects on the hardened surface properties, the attributes of the selected scanning patterns become significant variables in the process. This paper presents numerical and experimental investigations of four scanning patterns for laser surface hardening of AISI 4340 steel. The investigations are based on exhaustive modelling and simulation efforts carried out using a 3D finite element thermal analysis and structured experimental study according to Taguchi method. The temperature distribution and the hardness profile attributes are used to evaluate the effects of heating parameters and patterns design parameters on the hardened surface characteristics. This is very useful for integrating the scanning patterns</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> features in an efficient predictive modeling approach. A structured experimental design combined to improved statistical analysis tools </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> used</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> assess the 3D model performance. The experiments are performed on a 3 kW Nd:Yag laser system. The modeling results exhibit a great agreement between the predicted and measured values for the hardened surface characteristics. The model evaluation reveal</span></span></span><span><span><span>s </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">also its ability to provide not only accurate and robust predictions of the temperature distribution and the hardness profile as well an in-depth analysis of the effects of the process parameters.</span></span></span>展开更多
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric...Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ,which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical resuits.展开更多
A numerical study based on the finite volume method has been performed to study the three-dimension natural convection in a parallelogrammic top side opened cavity filled nanofluid with partially heated square at the ...A numerical study based on the finite volume method has been performed to study the three-dimension natural convection in a parallelogrammic top side opened cavity filled nanofluid with partially heated square at the bottom side.Results are obtained for different governing parameters such as nanoparticle concentration (φ) from 0 to 0.05,inclination angle of the back and front walls (α) from 5° to 75°,Rayleigh number from 10^3 to 10^5,and length of heater changer from 0.1 to 1.The main finding from the obtained result showed that the inclination angle and nanoparticle volume fraction affect the flow structure and enhance the heat transfer.展开更多
Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are ...Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are controlled and that no personnel are at risk.Rigorous ground control measures including real time monitoring systems at TARP(trigger-action-response-plan)protocols are widely utilized to prevent personnel from being exposed to slope failure risks.Technology and computing capability are rapidly evolving.Aerial photogrammetry techniques using UAV(unmanned aerial vehicle)enable geotechnical engineers and engineering geologists to work faster and more safely by removing themselves from potential line-of-fire near unstable slopes.Slope stability modelling software using limit equilibrium(LE)and finite element(FE)methods in three dimensions(3D)is also becoming more accessible,user-friendly and faster to operate.These key components enable geotechnical engineers to undertake site investigations,develop geotechnical models and assess slope stability faster and in more detail with less exposure to fall of ground hazards in the field.This paper describes the rapid and robust process utilized at BHP Limited for appraising a slope failure at an iron ore mine site in the Pilbara region of Western Australia using a combination of UAV photogrammetry and 3D slope stability models in less than a shift(i.e.less than 12 h).展开更多
A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron micr...A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.展开更多
In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object ...In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task.展开更多
The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron micr...The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron microscopy), and XRD(X-ray diffraction), respectively, and the coating parameters such as 3D surface micro-topography, grain size, surface height, hierarchy, profile height, and power spectral density, etc, were measured with AFM(atomic force microscope). The results show that the phases of TiN, TiAlN, and TiAlSiN coatings are TiN, TiN+TiAlN, TiN+Si_3N_4+TiAlN, respectively, while the surface roughness Sa of TiN, TiAlN, and TiAlSiN coatings is 75.3, 98.9, and 42.1 nm, respectively, and the roughness depth Sk is 209, 389, and 54 nm, respectively, the sequence of average grain sizes is TiAlN〉TiN〉TiAlSiN. The surface bearing index Sbi of TiN, TiAlN, and TiAlSiN coatings is 0.884, 1.01, and 0.37, respectively, and the sequence of surface bearing capability is TiAlN〉TiN〉TiAlSiN. At the lower wavelength(102-103 nm), the power spectral densities have a certain correlation, and the sequence of TiN〉TiAlN〉TiAlSiN, while the correlation is low at the higher wavelength(〉103 nm).展开更多
A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model ...A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.展开更多
It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling met...It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling methods of digital terrain and solid model as well as the techniques of texture mapping and scene navigation are adopted.The simulation system is developed by C program language,which includes the functions of the interactive navigation of 3D scene,the visual inquiry of project digital model information,the storage and management of project information.A certain reservoir is taken as a case.The 3D visual analysis for the construction layout and engineering information are obtained.The proposed system is of great advantages in dealing with large amount of information and the method provides a theoretical basis and technical support for the construction layout of a reservoir project.展开更多
A study was carried out to evaluate abrasion of shoe-sole for subjects with different running gait. A 3 dimensional (3D) scanning approach together with a commercial software, CloudCompare Mesh Cloud Comparison was ...A study was carried out to evaluate abrasion of shoe-sole for subjects with different running gait. A 3 dimensional (3D) scanning approach together with a commercial software, CloudCompare Mesh Cloud Comparison was utilized for this study. In CloudCompare, a grid system and colored scale was applied to identify the region and extend of abrasion of the shoe-sole. This study clearly showed the extent of abrasion on regions of shoe-sole identified from the colored scale. This paper was done with kind support from Asics Institute for Sports Science, Kobe, Japan and Institute for Sport Research (ISR-NTU).展开更多
The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm wer...The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm were determined for 43 phytoplankton species. A two-rank fluorescence spectra database was established by wavelet analysis and a fluorometric discrimination technique for determining phytoplankton population was developed. For laboratory simulatively mixed samples, the samples mixed from 43 algal species (the algae of one division accounted for 25%, 50%, 75%, 85%, and 100% of the gross biomass, respectively), the average discrimination rates at the level of division were 65.0%, 87.5%, 98.6%, 99.0%, and 99.1%, with average relative contents of 18.9%, 44.5%, 68.9%, 73.4%, and 82.9%, respectively; the samples mixed from 32 red tide algal species (the dominant species accounted for 60%, 70%, 80%, 90%, and 100% of the gross biomass, respectively), the average correct discrimination rates of the dominant species at the level of genus were 63.3%, 74.2%, 78.8%, 83.4%, and 79.4%, respectively. For the 81 laboratory mixed samples with the dominant species accounting for 75% of the gross biomass (chlorophyll), the discrimination rates of the dominant species were 95.1% and 72.8% at the level of division and genus, respectively. For the 12 samples collected from the mesocosm experiment in Maidao Bay of Qingdao in August 2007, the dominant species of the 11 samples were recognized at the division level and the dominant species of four of the five samples in which the dominant species accounted for more than 80% of the gross biomass were discriminated at the genus level; for the 12 samples obtained from Jiaozhou Bay in August 2007, the dominant species of all the 12 samples were recognized at the division level. The technique can be directly applied to fluorescence spectrophotometers and to the developing of an in situ algae fluorescence auto-analyzer for phytoplankton population.展开更多
[Objective]Staphylococcus arthritis became an increasingly significant health problem in intensive chicken farming in China.[Method]In this study,a bacteria strain was isolated from the broiler chicken suffering from ...[Objective]Staphylococcus arthritis became an increasingly significant health problem in intensive chicken farming in China.[Method]In this study,a bacteria strain was isolated from the broiler chicken suffering from arthritis and named as the strain Gg1.[Result]It was then identified as Staphylococcus chromogenes by the biochemical tests and phylogenetic tree analysis based on 16S rDNA sequence.Furthermore,the catalase(katA)gene was amplified by PCR using the designed primers,and the expected fragment was 1 232 bp long encoding a protein of 410 amino acids that shares the conserved motifs including catalase,heme-binding ligand and active center motif.Six phosphorylation sites(Ser95,Thr96,Ser241,Ser242,Thr281,Ser338),four conserved residues(Ser95,His216,Tyr281,Asp341)and two active sites(His56,Asn129)were demonstrated by multiple sequence alignment and homology comparisons.The homology modeling of 3D structure of katA protein was done by SWISSMODEL server based on the template retrieved from the catalase(PDB:2ISA_A)of Vibrio salmonicida.The katA protein represents a four-domain globular protein,the quality and reliability of the resulting protein structure was further verified by Ramachandran plot.[Conclusion]To our knowledge,this is the first report of S.chromogenes linked to arthritis in chicken and the bioinformatic characterization of its katA gene.展开更多
基金Supported by the KIST institutional program(2E26880,2E26276)
文摘X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)
文摘In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.
基金supported by grants from NIH (P30GM103333 and RO1AR054385 to LW)China CSC fellowship (to LF)DOD W81XWH-13-1-0148 (to XLL)
文摘The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.
基金Supported by Scientific Research Project of Chinese Medicine of Hubei Provincial Health Commission(ZY2021Q015)Project of Taihe Hospital(2021JJXM077,2019JJXM099,2016JJXM023)。
文摘[Objectives]To observe the effect of motor relearning combined with transcranial direct current stimulation on the motor function of lower extremities in patients with cerebral infarction,and to observe its effect on gait by 3D gait analysis.[Methods]60 patients with cerebral infarction who met the inclusion criteria were randomly divided into 3 groups according to the order of treatment(n=20).Group A received motor relearning treatment,group B received transcranial direct current stimulation treatment,group C received motor relearning combined with transcranial direct current stimulation,and the curative effect was observed after 5 courses of treatment.[Results]Before treatment,FMA,MBI,spatio-temporal parameters for 3D gait analysis(gait frequency,gait cycle,stride length,gait speed,stride length deviation,double support)and lower limb joint motion parameters(affected side stride length,maximum hip flexion,maximum hip extension,maximum knee flexion,maximum knee extension,stance phase,swing phase)were compared among the three groups.After treatment,the FMA and MBI of the three groups increased,and the spatio-temporal parameters for 3D gait analysis(gait frequency,gait cycle,gait speed,double support)and the lower limb joint motion parameters(affected side stride length,maximum hip flexion,maximum hip extension,maximum knee flexion,swing phase)were all improved,while the spatio-temporal parameters(stride length and stride length deviation)and the lower limb joint motion parameters(maximum knee extension and stance phase)decreased.Compared with those before treatment,there were significant differences among the three groups(P<0.05).Through the comparison between groups,it was found that the FMA,MBI,spatio-temporal parameters for 3D gait analysis(gait frequency,gait cycle,gait speed,double support)and lower limb joint motion parameters(affected side stride length,maximum hip flexion,maximum hip extension,maximum knee flexion,swing phase)in group C were significantly higher than those in group A and B,while the spatio-temporal parameters(stride length and stride length deviation)and lower limb joint motion parameters(maximum knee extension and stance phase)in group C were significantly lower than those in group A and group B,and the difference was statistically significant(P<0.05).[Conclusions]Motor relearning combined with transcranial direct current stimulation could increase MBI and FMA,improve gait spatio-temporal parameters and lower limb joint motion parameters,and correct abnormal gait in patients with cerebral infarction.
文摘<span style="font-family:Verdana;">Laser surface hardening is becoming one of the most successful heat treatment processes for improving wear and fatigue properties of steel parts. In this process, the heating system parameters and the material properties have important effects on the achieved hardened surface characteristics. The control of these variables using predictive modeling strategies leads to the desired surface properties without following the fastidious trial and error method. However, when the dimensions of the surface to be treated are larger than the cross section of the laser beam, various laser scanning patterns can be used. Due to their effects on the hardened surface properties, the attributes of the selected scanning patterns become significant variables in the process. This paper presents numerical and experimental investigations of four scanning patterns for laser surface hardening of AISI 4340 steel. The investigations are based on exhaustive modelling and simulation efforts carried out using a 3D finite element thermal analysis and structured experimental study according to Taguchi method. The temperature distribution and the hardness profile attributes are used to evaluate the effects of heating parameters and patterns design parameters on the hardened surface characteristics. This is very useful for integrating the scanning patterns</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> features in an efficient predictive modeling approach. A structured experimental design combined to improved statistical analysis tools </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> used</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> assess the 3D model performance. The experiments are performed on a 3 kW Nd:Yag laser system. The modeling results exhibit a great agreement between the predicted and measured values for the hardened surface characteristics. The model evaluation reveal</span></span></span><span><span><span>s </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">also its ability to provide not only accurate and robust predictions of the temperature distribution and the hardness profile as well an in-depth analysis of the effects of the process parameters.</span></span></span>
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
文摘Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ,which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical resuits.
文摘A numerical study based on the finite volume method has been performed to study the three-dimension natural convection in a parallelogrammic top side opened cavity filled nanofluid with partially heated square at the bottom side.Results are obtained for different governing parameters such as nanoparticle concentration (φ) from 0 to 0.05,inclination angle of the back and front walls (α) from 5° to 75°,Rayleigh number from 10^3 to 10^5,and length of heater changer from 0.1 to 1.The main finding from the obtained result showed that the inclination angle and nanoparticle volume fraction affect the flow structure and enhance the heat transfer.
文摘Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are controlled and that no personnel are at risk.Rigorous ground control measures including real time monitoring systems at TARP(trigger-action-response-plan)protocols are widely utilized to prevent personnel from being exposed to slope failure risks.Technology and computing capability are rapidly evolving.Aerial photogrammetry techniques using UAV(unmanned aerial vehicle)enable geotechnical engineers and engineering geologists to work faster and more safely by removing themselves from potential line-of-fire near unstable slopes.Slope stability modelling software using limit equilibrium(LE)and finite element(FE)methods in three dimensions(3D)is also becoming more accessible,user-friendly and faster to operate.These key components enable geotechnical engineers to undertake site investigations,develop geotechnical models and assess slope stability faster and in more detail with less exposure to fall of ground hazards in the field.This paper describes the rapid and robust process utilized at BHP Limited for appraising a slope failure at an iron ore mine site in the Pilbara region of Western Australia using a combination of UAV photogrammetry and 3D slope stability models in less than a shift(i.e.less than 12 h).
文摘A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.
基金This paper was partially supported by a project of the Shanghai Science and Technology Committee(18510760300)Anhui Natural Science Foundation(1908085MF178)Anhui Excellent Young Talents Support Program Project(gxyqZD2019069).
文摘In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task.
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)
文摘The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron microscopy), and XRD(X-ray diffraction), respectively, and the coating parameters such as 3D surface micro-topography, grain size, surface height, hierarchy, profile height, and power spectral density, etc, were measured with AFM(atomic force microscope). The results show that the phases of TiN, TiAlN, and TiAlSiN coatings are TiN, TiN+TiAlN, TiN+Si_3N_4+TiAlN, respectively, while the surface roughness Sa of TiN, TiAlN, and TiAlSiN coatings is 75.3, 98.9, and 42.1 nm, respectively, and the roughness depth Sk is 209, 389, and 54 nm, respectively, the sequence of average grain sizes is TiAlN〉TiN〉TiAlSiN. The surface bearing index Sbi of TiN, TiAlN, and TiAlSiN coatings is 0.884, 1.01, and 0.37, respectively, and the sequence of surface bearing capability is TiAlN〉TiN〉TiAlSiN. At the lower wavelength(102-103 nm), the power spectral densities have a certain correlation, and the sequence of TiN〉TiAlN〉TiAlSiN, while the correlation is low at the higher wavelength(〉103 nm).
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the National Natural Science Foundation of China(No.51339003 and No.51439005)
文摘A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling methods of digital terrain and solid model as well as the techniques of texture mapping and scene navigation are adopted.The simulation system is developed by C program language,which includes the functions of the interactive navigation of 3D scene,the visual inquiry of project digital model information,the storage and management of project information.A certain reservoir is taken as a case.The 3D visual analysis for the construction layout and engineering information are obtained.The proposed system is of great advantages in dealing with large amount of information and the method provides a theoretical basis and technical support for the construction layout of a reservoir project.
文摘A study was carried out to evaluate abrasion of shoe-sole for subjects with different running gait. A 3 dimensional (3D) scanning approach together with a commercial software, CloudCompare Mesh Cloud Comparison was utilized for this study. In CloudCompare, a grid system and colored scale was applied to identify the region and extend of abrasion of the shoe-sole. This study clearly showed the extent of abrasion on regions of shoe-sole identified from the colored scale. This paper was done with kind support from Asics Institute for Sports Science, Kobe, Japan and Institute for Sport Research (ISR-NTU).
基金supported by National High-Tech Research and Development Program of China (863 Program)(No.2009AA063005)Natural Science Foundation of Shandong Province (No.ZR2009EM001)
文摘The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm were determined for 43 phytoplankton species. A two-rank fluorescence spectra database was established by wavelet analysis and a fluorometric discrimination technique for determining phytoplankton population was developed. For laboratory simulatively mixed samples, the samples mixed from 43 algal species (the algae of one division accounted for 25%, 50%, 75%, 85%, and 100% of the gross biomass, respectively), the average discrimination rates at the level of division were 65.0%, 87.5%, 98.6%, 99.0%, and 99.1%, with average relative contents of 18.9%, 44.5%, 68.9%, 73.4%, and 82.9%, respectively; the samples mixed from 32 red tide algal species (the dominant species accounted for 60%, 70%, 80%, 90%, and 100% of the gross biomass, respectively), the average correct discrimination rates of the dominant species at the level of genus were 63.3%, 74.2%, 78.8%, 83.4%, and 79.4%, respectively. For the 81 laboratory mixed samples with the dominant species accounting for 75% of the gross biomass (chlorophyll), the discrimination rates of the dominant species were 95.1% and 72.8% at the level of division and genus, respectively. For the 12 samples collected from the mesocosm experiment in Maidao Bay of Qingdao in August 2007, the dominant species of the 11 samples were recognized at the division level and the dominant species of four of the five samples in which the dominant species accounted for more than 80% of the gross biomass were discriminated at the genus level; for the 12 samples obtained from Jiaozhou Bay in August 2007, the dominant species of all the 12 samples were recognized at the division level. The technique can be directly applied to fluorescence spectrophotometers and to the developing of an in situ algae fluorescence auto-analyzer for phytoplankton population.
基金Supported by the National Natural Science Foundation of China (No.31272692,No.30800847)
文摘[Objective]Staphylococcus arthritis became an increasingly significant health problem in intensive chicken farming in China.[Method]In this study,a bacteria strain was isolated from the broiler chicken suffering from arthritis and named as the strain Gg1.[Result]It was then identified as Staphylococcus chromogenes by the biochemical tests and phylogenetic tree analysis based on 16S rDNA sequence.Furthermore,the catalase(katA)gene was amplified by PCR using the designed primers,and the expected fragment was 1 232 bp long encoding a protein of 410 amino acids that shares the conserved motifs including catalase,heme-binding ligand and active center motif.Six phosphorylation sites(Ser95,Thr96,Ser241,Ser242,Thr281,Ser338),four conserved residues(Ser95,His216,Tyr281,Asp341)and two active sites(His56,Asn129)were demonstrated by multiple sequence alignment and homology comparisons.The homology modeling of 3D structure of katA protein was done by SWISSMODEL server based on the template retrieved from the catalase(PDB:2ISA_A)of Vibrio salmonicida.The katA protein represents a four-domain globular protein,the quality and reliability of the resulting protein structure was further verified by Ramachandran plot.[Conclusion]To our knowledge,this is the first report of S.chromogenes linked to arthritis in chicken and the bioinformatic characterization of its katA gene.