The method of 3D polar transformation of full gravity potential gradient vectors is based on the geometric properties of the crossing points of complete gradient of the potential to localize the source region that cau...The method of 3D polar transformation of full gravity potential gradient vectors is based on the geometric properties of the crossing points of complete gradient of the potential to localize the source region that causes the observed anomaly. The cross-points—poles—are defined for rectangular polygons of different sizes where the full gradient vector is defined at every vertex. The polygon size range could be specified. The set of poles, positive and negative, is then represented on the 3D chart in the form of clusters of dots or cubes and can be considered as a model image of the sources, intended for visual analysis and further interpretation.展开更多
文摘The method of 3D polar transformation of full gravity potential gradient vectors is based on the geometric properties of the crossing points of complete gradient of the potential to localize the source region that causes the observed anomaly. The cross-points—poles—are defined for rectangular polygons of different sizes where the full gradient vector is defined at every vertex. The polygon size range could be specified. The set of poles, positive and negative, is then represented on the 3D chart in the form of clusters of dots or cubes and can be considered as a model image of the sources, intended for visual analysis and further interpretation.