Building three-dimensional(3D) current collectors is a promising strategy to surmount the bottlenecks of lithium metal anodes(LMAs), but the regulation methodology of a 3D current collector has seldom been considered ...Building three-dimensional(3D) current collectors is a promising strategy to surmount the bottlenecks of lithium metal anodes(LMAs), but the regulation methodology of a 3D current collector has seldom been considered comprehensively concerning both skeleton architectures and surface coatings. Herein, a robust porous 3D nickel skeleton(NS) with lithiophilic NiN nanocoatings(NiN@NS) is synthesized via an integrative route of powder metallurgy/plasma-enhanced nitridation technics. The facile powder metallurgical method facilitates the adjustment of NS architectures toward sufficient electrolyte adsorption and even current density distribution, while the followed plasma-enhanced chemical vapor deposition(PECVD) method can induce compact NiN nanocoatings on NS, which reduces the Li nucleation overpotential, accelerates the Li-ion transfer, and facilitates a highly reversible oriented texture of Li deposition morphology owing to the dense and homogenous deposition of Li into the pores. The optimized NiN@NS current collector shows a high averaged Coulombic efficiency(CE) of 98.8% over 350cycles, a prolonged lifespan of 1000 h(at 2 mA cm^(-2)) in symmetrical cells, together with the significant performance in full cells. The ingenious methodology reported in this work can also be broadly applicable for the controllable production of other 3D skeletons with nitride nanocoatings for various applications.展开更多
We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of elec...We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites,easy access of electrolyte ions,and facile charge transport for flexible wearable applications.The interconnected and compact electrode delivers a high volumetric capacitance(gravimetric capacitance)of 73 F cm−3(2446 F g−1),excellent rate capability,and cycle stability.The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire(NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire(Mn3O4/3D-Ni)hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1.The red lightemitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions.The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times,for smart wearable and implantable devices.展开更多
Equipped with highest-energy density anode,lithium metal batteries are of great interests for the nextgeneration energy storage systems.However,the existing problems like uneven Li deposition,large volume expansion an...Equipped with highest-energy density anode,lithium metal batteries are of great interests for the nextgeneration energy storage systems.However,the existing problems like uneven Li deposition,large volume expansion and short cycling lifespan severely retard the implementation of Li metal anodes.Herein,we report an in-situ formed Cu_(x)O nanofiber network synthesized by facile and scalable calcination process and employ as stable lithium metal anode.The CuO/Cu_(2)O ratio in the lithiophilic Cu_(x)O network can be adjusted through an optimal annealing time,thus guiding the homogeneous distribution of Li atoms and regulating the repeated plating/stripping processes.As a result,Li@Cu_(x)O 3D scaffold displays an ultralow overpotential of 7.7 mV,long cycling life for more than 1000 h in symmetric cell,and exceptional stability for LiFePO_(4)//Li full cells.This work provides guidelines for the design and fabrication of lithiophilic 3D matrixes and advances the practical use of lithium metal batteries.展开更多
锂金属负极具有较高的理论比容量(3860 mAh/g)和较低的还原电势(-3.04 V vs.标准氢电势),被誉为最具发展潜力的负极材料,但是锂金属负极中的枝晶、死锂等问题阻碍了锂金属电池的商业化发展。针对锂金属负极中出现的问题,研究人员提出了...锂金属负极具有较高的理论比容量(3860 mAh/g)和较低的还原电势(-3.04 V vs.标准氢电势),被誉为最具发展潜力的负极材料,但是锂金属负极中的枝晶、死锂等问题阻碍了锂金属电池的商业化发展。针对锂金属负极中出现的问题,研究人员提出了大量的解决方案,其中,三维集流体不仅可以降低电流密度,缓解枝晶生长,还可以容纳锂沉积/溶解过程中发生的体积变化。而碳基三维集流体更是因其稳定的化学性质和较小的密度受到了极大的关注。从碳基三维集流体的制备、改性以及对锂沉积/溶解的影响进行介绍,并对其发展进行了展望。展开更多
Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve ...Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve the stability of Li metal but the properties of these foams are inherently limited. Here we report a facile surface modification approach via magnetron sputtering of mixed oxides that effectively modulate the properties of Cu foams for supporting Li metal with remarkable stability. We discovered that hybrid Li anodes with Li metal thermally infused to aluminum-zinc oxides(AZO) coated Cu foams have significantly improved stability and reactivity compared with pristine Li foils and Li infused to unmodified Cu foams. Full cells assembled with a Li Fe PO4 cathode and a hybrid anode maintained low and stable charge-transfer resistance(<50) during 500 cycles in carbonate electrolytes, and exhibited superior rate capability(~100 m Ah g-1 at 20 C) along with better electrochemical reversibility and surface stability. The AZO modified Cu foams had superior mechanical strength and afforded the hybrid anodes with minimized volume change without the formation of dendrites during battery cycling. The rational construction of surface architecture to precisely control Li plating and stripping may have great implications for the practical applications of Li metal batteries.展开更多
锂金属因其具有超高比容量(3860 mAh·g^(-1))以及较低的氧化还原电势(-3.04 V vs标准氢电极),被认为是下一代高能量密度二次电池的理想负极材料。然而“无宿主”的金属锂在金属/电解液界面层进行沉积/剥离,不可避免地会生长枝晶,...锂金属因其具有超高比容量(3860 mAh·g^(-1))以及较低的氧化还原电势(-3.04 V vs标准氢电极),被认为是下一代高能量密度二次电池的理想负极材料。然而“无宿主”的金属锂在金属/电解液界面层进行沉积/剥离,不可避免地会生长枝晶,不仅使电极表面电流分布不均,同时可能会刺穿电池隔膜而导致电池短路。通过构造三维集流体/锂金属复合负极可以有效调控锂沉积行为并抑制枝晶生长,从而提升电池的库仑效率、循环寿命以及倍率性能,该领域近年来一直都是研究的热点。本文首先总结了基于三维集流体抑制锂枝晶的相关原理和模型;其次针对用于负极的铜基集流体,根据构成三维结构基底单元的维度,总结了三维铜基集流体的制备方法及其在锂金属负极保护方面的应用;最后,对三维集流体构造复合锂负极进行了总结和展望。展开更多
Lithium(Li)metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity.However,the formation of dendrites and its tendency for large volume expansion ...Lithium(Li)metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity.However,the formation of dendrites and its tendency for large volume expansion during plating/stripping restrict the application of Li metal in practical scenarios.In this work,we developed reduced graphene oxide-graphitic carbon nitride(rGO-C3N4,GCN)with highly elastic and wrinkled structure as the current collector.Lithiophilic site C3N4 in GCN could reduce the nucleation overpotential.In addition,this material effectively inhibited electrode expansion during cycling.At the same time,due to its high elasticity,GCN could release the stress induced by Li deposition to maintain structural integrity of the electrode.Limetal anodes with GCN exhibited small volume expansion,high Coulombic efficiency(CE)of 98.6%within 300 cycles and long cycling life of more than 1700 h.This work described and demonstrated a new approach to construct flexible current collectors for stable lithium-metal anodes.展开更多
基金supported by the National Natural Science Foundation of China(U1904216)。
文摘Building three-dimensional(3D) current collectors is a promising strategy to surmount the bottlenecks of lithium metal anodes(LMAs), but the regulation methodology of a 3D current collector has seldom been considered comprehensively concerning both skeleton architectures and surface coatings. Herein, a robust porous 3D nickel skeleton(NS) with lithiophilic NiN nanocoatings(NiN@NS) is synthesized via an integrative route of powder metallurgy/plasma-enhanced nitridation technics. The facile powder metallurgical method facilitates the adjustment of NS architectures toward sufficient electrolyte adsorption and even current density distribution, while the followed plasma-enhanced chemical vapor deposition(PECVD) method can induce compact NiN nanocoatings on NS, which reduces the Li nucleation overpotential, accelerates the Li-ion transfer, and facilitates a highly reversible oriented texture of Li deposition morphology owing to the dense and homogenous deposition of Li into the pores. The optimized NiN@NS current collector shows a high averaged Coulombic efficiency(CE) of 98.8% over 350cycles, a prolonged lifespan of 1000 h(at 2 mA cm^(-2)) in symmetrical cells, together with the significant performance in full cells. The ingenious methodology reported in this work can also be broadly applicable for the controllable production of other 3D skeletons with nitride nanocoatings for various applications.
基金supported by national research foundation of Korea(NRF)(No.NRF-2019R1H1A2039743)S-Oil corporation,and “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry and Energy,Republic of Korea(No.20194010201890)
文摘We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites,easy access of electrolyte ions,and facile charge transport for flexible wearable applications.The interconnected and compact electrode delivers a high volumetric capacitance(gravimetric capacitance)of 73 F cm−3(2446 F g−1),excellent rate capability,and cycle stability.The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire(NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire(Mn3O4/3D-Ni)hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1.The red lightemitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions.The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times,for smart wearable and implantable devices.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515012111)the Science and Technology Innovation Commission of Shenzhen(JCYJ20180507181858539 and JCYJ20190808173815205)+1 种基金the National Key R&D Program of China(2019YFB2204500)the Shenzhen Science and Technology Program(KQTD20180412181422399)。
文摘Equipped with highest-energy density anode,lithium metal batteries are of great interests for the nextgeneration energy storage systems.However,the existing problems like uneven Li deposition,large volume expansion and short cycling lifespan severely retard the implementation of Li metal anodes.Herein,we report an in-situ formed Cu_(x)O nanofiber network synthesized by facile and scalable calcination process and employ as stable lithium metal anode.The CuO/Cu_(2)O ratio in the lithiophilic Cu_(x)O network can be adjusted through an optimal annealing time,thus guiding the homogeneous distribution of Li atoms and regulating the repeated plating/stripping processes.As a result,Li@Cu_(x)O 3D scaffold displays an ultralow overpotential of 7.7 mV,long cycling life for more than 1000 h in symmetric cell,and exceptional stability for LiFePO_(4)//Li full cells.This work provides guidelines for the design and fabrication of lithiophilic 3D matrixes and advances the practical use of lithium metal batteries.
文摘锂金属负极具有较高的理论比容量(3860 mAh/g)和较低的还原电势(-3.04 V vs.标准氢电势),被誉为最具发展潜力的负极材料,但是锂金属负极中的枝晶、死锂等问题阻碍了锂金属电池的商业化发展。针对锂金属负极中出现的问题,研究人员提出了大量的解决方案,其中,三维集流体不仅可以降低电流密度,缓解枝晶生长,还可以容纳锂沉积/溶解过程中发生的体积变化。而碳基三维集流体更是因其稳定的化学性质和较小的密度受到了极大的关注。从碳基三维集流体的制备、改性以及对锂沉积/溶解的影响进行介绍,并对其发展进行了展望。
基金The financial supports of the National Natural Science Foundation of China(Grant Nos.51572060,51702067 and 51671074)Special Financial Grant from the China Postdoctoral Science Foundation(No.2017T100239)+1 种基金General Financial Grant from the China Postdoctoral Science Foundation(No.2016M590279)the startup grants from Northern Illinois University。
文摘Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve the stability of Li metal but the properties of these foams are inherently limited. Here we report a facile surface modification approach via magnetron sputtering of mixed oxides that effectively modulate the properties of Cu foams for supporting Li metal with remarkable stability. We discovered that hybrid Li anodes with Li metal thermally infused to aluminum-zinc oxides(AZO) coated Cu foams have significantly improved stability and reactivity compared with pristine Li foils and Li infused to unmodified Cu foams. Full cells assembled with a Li Fe PO4 cathode and a hybrid anode maintained low and stable charge-transfer resistance(<50) during 500 cycles in carbonate electrolytes, and exhibited superior rate capability(~100 m Ah g-1 at 20 C) along with better electrochemical reversibility and surface stability. The AZO modified Cu foams had superior mechanical strength and afforded the hybrid anodes with minimized volume change without the formation of dendrites during battery cycling. The rational construction of surface architecture to precisely control Li plating and stripping may have great implications for the practical applications of Li metal batteries.
文摘锂金属因其具有超高比容量(3860 mAh·g^(-1))以及较低的氧化还原电势(-3.04 V vs标准氢电极),被认为是下一代高能量密度二次电池的理想负极材料。然而“无宿主”的金属锂在金属/电解液界面层进行沉积/剥离,不可避免地会生长枝晶,不仅使电极表面电流分布不均,同时可能会刺穿电池隔膜而导致电池短路。通过构造三维集流体/锂金属复合负极可以有效调控锂沉积行为并抑制枝晶生长,从而提升电池的库仑效率、循环寿命以及倍率性能,该领域近年来一直都是研究的热点。本文首先总结了基于三维集流体抑制锂枝晶的相关原理和模型;其次针对用于负极的铜基集流体,根据构成三维结构基底单元的维度,总结了三维铜基集流体的制备方法及其在锂金属负极保护方面的应用;最后,对三维集流体构造复合锂负极进行了总结和展望。
基金the National Natural Science Foundation of China(51525206 and 51927803)the National Key R&D Program of China(2016YFA0200100 and 2016YFB0100100)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010602)Liaoning Revitalization Talents Program(XLYC1908015)China Petrochemical Cooperation(218025)。
文摘Lithium(Li)metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity.However,the formation of dendrites and its tendency for large volume expansion during plating/stripping restrict the application of Li metal in practical scenarios.In this work,we developed reduced graphene oxide-graphitic carbon nitride(rGO-C3N4,GCN)with highly elastic and wrinkled structure as the current collector.Lithiophilic site C3N4 in GCN could reduce the nucleation overpotential.In addition,this material effectively inhibited electrode expansion during cycling.At the same time,due to its high elasticity,GCN could release the stress induced by Li deposition to maintain structural integrity of the electrode.Limetal anodes with GCN exhibited small volume expansion,high Coulombic efficiency(CE)of 98.6%within 300 cycles and long cycling life of more than 1700 h.This work described and demonstrated a new approach to construct flexible current collectors for stable lithium-metal anodes.