3D目标检测是自动驾驶技术的基础,融合激光点云和图像等模态的信息可以有效地提高目标检测的准确性和鲁棒性。文章改进了现有融合激光点云和图像等模态信息的3D目标检测网络,提出了一种新的并行融合模块,用于同时维护两种模态下的特征信...3D目标检测是自动驾驶技术的基础,融合激光点云和图像等模态的信息可以有效地提高目标检测的准确性和鲁棒性。文章改进了现有融合激光点云和图像等模态信息的3D目标检测网络,提出了一种新的并行融合模块,用于同时维护两种模态下的特征信息,减少信息损失。此外,利用掩码特征增强模块,提高受遮挡物体的检测能力。在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上进行了验证,实验结果表明,相比于基准网络,该方法有效提高了3D目标检测的性能,平均精度达到了77.41%,同时优于目前大多数的先进方法。展开更多
卫星云图是气象预报的重要资源之一,可以显示云层的生消变化,对气象分析和预报工作有极大的作用.对云图进行一定时间段的预测有助于及时掌握云层的移动轨迹和变化情况,提高卫星云图资料的实用性.然而,当前卫星云图的预测面临诸多困难,例...卫星云图是气象预报的重要资源之一,可以显示云层的生消变化,对气象分析和预报工作有极大的作用.对云图进行一定时间段的预测有助于及时掌握云层的移动轨迹和变化情况,提高卫星云图资料的实用性.然而,当前卫星云图的预测面临诸多困难,例如,云团的变化大多是非平稳、非线性的;云图数据量小,实时性差等.因此,从时空序列的角度出发,提出一种基于3D卷积和自注意力机制的卫星云图预测模型,该模型在ST-LSTM(Spatiotemporal Long ShortTerm Memory)的基础上,在其单元内部引入3D卷积和自注意力机制,使模型能同时提取时间信息和空间特征,进一步增强云层短期趋势和长期依赖的联系;同时,在其外部框架使用空间和通道注意力机制,促进对云图空间特征的提取.在风云四号的卫星云图上进行评估,实验结果证明,该模型能够较准确地预测云层的形态变化和运动轨迹,各项评价指标均优于现有模型.展开更多
目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-...目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-scale with Attention mechanism for Point cloud Upsampling),网络由特征提取器、特征拓展器、坐标细化器和坐标重建器4个模块级联组成。首先给定一个N×3的稀疏点云作为输入,为了获得点云的全局和局部特征信息,设计了一个嵌入注意力机制的并行多尺度特征提取模块(PMA)用于将三维空间的点云映射到高维特征空间。其次使用边缘卷积特征拓展器拓展点云特征维度,得到高维点云特征,以更好地保留点云特征的边缘信息,将高维点云特征通过坐标重建器转换回三维空间中。最后使用坐标细化器精细调整输出点云细节。在合成数据集PU1K上的对比实验结果表明,PMA-PU生成的密集点云在倒角距离(CD)、豪斯多夫距离(HD)和点面距离(P2F)上都有显著提升,分别比性能次优的网络模型优化了7.863%,21.631%,14.686%。可视化结果证明了PMA-PU具有性能更好的特征提取器,能够生成细粒度更高、形状更接近真实值的密集点云。展开更多
针对现有中文因果关系抽取方法对因果事件边界难以识别和文本特征表示不充分的问题,该文提出了一种基于外部词汇信息和注意力机制的中文因果关系抽取模型BiLSTM-TWAM+CRF。该模型使用SoftLexicon方法引入外部词汇信息构建词集,解决了因...针对现有中文因果关系抽取方法对因果事件边界难以识别和文本特征表示不充分的问题,该文提出了一种基于外部词汇信息和注意力机制的中文因果关系抽取模型BiLSTM-TWAM+CRF。该模型使用SoftLexicon方法引入外部词汇信息构建词集,解决了因果事件边界难以识别的问题。通过构建的双路关注模块TWAM(Two Way Attention Module),实现了从局部和全局两个角度充分刻画文本特征。实验结果表明,与当前中文因果关系抽取模型相比较,该文所提方法表现出更优的抽取效果。展开更多
在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段...在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段融合算法难以充分融合二者的特征.为此,本文提出一种新的多层多模态融合的3D目标检测方法:首先,前融合阶段通过在2D检测框形成的锥视区内对点云进行局部顺序的色彩信息(Red Green Blue,RGB)涂抹编码;然后将编码后点云输入融合了自注意力机制上下文感知的通道扩充PointPillars检测网络;后融合阶段将2D候选框与3D候选框在非极大抑制之前编码为两组稀疏张量,利用相机激光雷达对象候选融合网络得出最终的3D目标检测结果.在KITTI数据集上进行的实验表明,本融合检测方法相较于纯点云网络的基线上有了显著的性能提升,平均mAP提高了6.24%.展开更多
针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富...针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。展开更多
文摘3D目标检测是自动驾驶技术的基础,融合激光点云和图像等模态的信息可以有效地提高目标检测的准确性和鲁棒性。文章改进了现有融合激光点云和图像等模态信息的3D目标检测网络,提出了一种新的并行融合模块,用于同时维护两种模态下的特征信息,减少信息损失。此外,利用掩码特征增强模块,提高受遮挡物体的检测能力。在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上进行了验证,实验结果表明,相比于基准网络,该方法有效提高了3D目标检测的性能,平均精度达到了77.41%,同时优于目前大多数的先进方法。
文摘卫星云图是气象预报的重要资源之一,可以显示云层的生消变化,对气象分析和预报工作有极大的作用.对云图进行一定时间段的预测有助于及时掌握云层的移动轨迹和变化情况,提高卫星云图资料的实用性.然而,当前卫星云图的预测面临诸多困难,例如,云团的变化大多是非平稳、非线性的;云图数据量小,实时性差等.因此,从时空序列的角度出发,提出一种基于3D卷积和自注意力机制的卫星云图预测模型,该模型在ST-LSTM(Spatiotemporal Long ShortTerm Memory)的基础上,在其单元内部引入3D卷积和自注意力机制,使模型能同时提取时间信息和空间特征,进一步增强云层短期趋势和长期依赖的联系;同时,在其外部框架使用空间和通道注意力机制,促进对云图空间特征的提取.在风云四号的卫星云图上进行评估,实验结果证明,该模型能够较准确地预测云层的形态变化和运动轨迹,各项评价指标均优于现有模型.
文摘目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-scale with Attention mechanism for Point cloud Upsampling),网络由特征提取器、特征拓展器、坐标细化器和坐标重建器4个模块级联组成。首先给定一个N×3的稀疏点云作为输入,为了获得点云的全局和局部特征信息,设计了一个嵌入注意力机制的并行多尺度特征提取模块(PMA)用于将三维空间的点云映射到高维特征空间。其次使用边缘卷积特征拓展器拓展点云特征维度,得到高维点云特征,以更好地保留点云特征的边缘信息,将高维点云特征通过坐标重建器转换回三维空间中。最后使用坐标细化器精细调整输出点云细节。在合成数据集PU1K上的对比实验结果表明,PMA-PU生成的密集点云在倒角距离(CD)、豪斯多夫距离(HD)和点面距离(P2F)上都有显著提升,分别比性能次优的网络模型优化了7.863%,21.631%,14.686%。可视化结果证明了PMA-PU具有性能更好的特征提取器,能够生成细粒度更高、形状更接近真实值的密集点云。
文摘针对现有中文因果关系抽取方法对因果事件边界难以识别和文本特征表示不充分的问题,该文提出了一种基于外部词汇信息和注意力机制的中文因果关系抽取模型BiLSTM-TWAM+CRF。该模型使用SoftLexicon方法引入外部词汇信息构建词集,解决了因果事件边界难以识别的问题。通过构建的双路关注模块TWAM(Two Way Attention Module),实现了从局部和全局两个角度充分刻画文本特征。实验结果表明,与当前中文因果关系抽取模型相比较,该文所提方法表现出更优的抽取效果。
文摘在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段融合算法难以充分融合二者的特征.为此,本文提出一种新的多层多模态融合的3D目标检测方法:首先,前融合阶段通过在2D检测框形成的锥视区内对点云进行局部顺序的色彩信息(Red Green Blue,RGB)涂抹编码;然后将编码后点云输入融合了自注意力机制上下文感知的通道扩充PointPillars检测网络;后融合阶段将2D候选框与3D候选框在非极大抑制之前编码为两组稀疏张量,利用相机激光雷达对象候选融合网络得出最终的3D目标检测结果.在KITTI数据集上进行的实验表明,本融合检测方法相较于纯点云网络的基线上有了显著的性能提升,平均mAP提高了6.24%.
文摘针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。