期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
利用强启动子PermE^*提高4"-异戊酰基转移酶基因在变铅青链霉菌TK24中对螺旋霉素的4"-异戊酰化水平 被引量:8
1
作者 杨永红 赫卫清 +4 位作者 李瑞芬 戴剑漉 杨劭 王以光 武临专 《中国抗生素杂志》 CAS CSCD 北大核心 2010年第11期826-830,共5页
目的提高螺旋霉素生物转化为4"-异戊酰螺旋霉素的水平,为构建以4"-异戊酰螺旋霉素为主要组分的必特螺旋霉素新一代基因工程菌提供指导。方法构建重组质粒pKC1139-e-ist-ist和pKC1139-ist-ist,它们分别含有5'-上游插入红... 目的提高螺旋霉素生物转化为4"-异戊酰螺旋霉素的水平,为构建以4"-异戊酰螺旋霉素为主要组分的必特螺旋霉素新一代基因工程菌提供指导。方法构建重组质粒pKC1139-e-ist-ist和pKC1139-ist-ist,它们分别含有5'-上游插入红霉素抗性基因强启动子PermE*的4"-异戊酰基转移酶基因串连双拷贝,和4"-异戊酰基转移酶基因串连双拷贝;将它们分别导入到变铅青链霉菌TK24中,比较它们对螺旋霉素的4"-异戊酰化能力。结果在加入终浓度为50μg/mL螺旋霉素时,变铅青链霉菌TK24[pKC1139-e-ist-ist]比变铅青链霉菌TK24[pKC1139-ist-ist]对螺旋霉素的4"-异戊酰化水平提高近4倍。结论在变铅青链霉菌TK24中,PermE*可以增强4"-异戊酰基转移酶基因表达,明显提高对螺旋霉素的4"-异戊酰化水平。 展开更多
关键词 螺旋霉素 4"-异戊酰基转移基因 变铅青链霉菌TK24 PermE* 生物转化 必特螺旋霉素
下载PDF
利用异源正调控基因acyB2构建埃莎霉素Ⅰ高产菌株 被引量:4
2
作者 戴剑漉 卢智黎 +2 位作者 林灵 王以光 赫卫清 《中国生物工程杂志》 CAS CSCD 北大核心 2017年第3期65-72,共8页
必特螺旋霉素(bitespiramycin,BT)是以异戊酰螺旋霉素(简称为埃莎霉素)Ⅰ、Ⅱ和Ⅲ为主要成分的多组分抗生素。通过阻断3-O-酰基转移酶基因(sspA),获得了只产埃莎霉素Ⅰ的WSJ-2菌株,但其发酵产物中含有大量螺旋霉素,而埃莎霉素Ⅰ含量较... 必特螺旋霉素(bitespiramycin,BT)是以异戊酰螺旋霉素(简称为埃莎霉素)Ⅰ、Ⅱ和Ⅲ为主要成分的多组分抗生素。通过阻断3-O-酰基转移酶基因(sspA),获得了只产埃莎霉素Ⅰ的WSJ-2菌株,但其发酵产物中含有大量螺旋霉素,而埃莎霉素Ⅰ含量较低。为提高4″-异戊酰基转移酶基因(ist)在WSJ-2中的表达水平,从而提高埃莎霉素Ⅰ的产量,首先构建了含有ist基因和其正调控基因acyB2连锁片段的重组质粒pSET152-ia,然后将其导入到埃莎霉素Ⅰ产生菌WSJ-2中,通过具有阿普拉霉素(apramycin)抗性标记的链霉菌整合型载体pSET152整合到WSJ-2的染色体上,获得新的埃莎霉素Ⅰ产生菌WSJ-IA。在不同发酵时间定量检测ist的表达水平,WSJ-IA中ist的表达量要明显高于WSJ-2。WSJ-IA高产菌株的发酵单位从(280±20)μg/ml提高至(1160±108)μg/ml,较原始菌株WSJ-2提高了314%,而且在WSJ-IA发酵产物中埃莎霉素Ⅰ与螺旋霉素Ⅰ含量的比值是WSJ-2的2.4倍左右,说明在引入acyB2基因的同时提高了菌株的发酵单位和埃莎霉素Ⅰ的产量。 展开更多
关键词 埃莎霉素Ⅰ 4″-异戊酰基转移基因(ist) 正调控基因acyB2
原文传递
利用CRISPR-Cas9系统与核糖体工程获得新型可利霉素产生菌 被引量:8
3
作者 刘娟娟 张妍 赫卫清 《生物工程学报》 CAS CSCD 北大核心 2021年第6期2116-2126,共11页
可利霉素(Carrimycin,CAM)是将异戊酰基转移酶基因(Isovaleryltransferase gene,ist)导入到螺旋链霉菌中产生的以异戊酰螺旋霉素(Isovalerylspiramycin,ISP)为主组分的抗生素。原工程菌中的ist基因与螺旋霉素(Spiramycin,SP)生物合成基... 可利霉素(Carrimycin,CAM)是将异戊酰基转移酶基因(Isovaleryltransferase gene,ist)导入到螺旋链霉菌中产生的以异戊酰螺旋霉素(Isovalerylspiramycin,ISP)为主组分的抗生素。原工程菌中的ist基因与螺旋霉素(Spiramycin,SP)生物合成基因簇相距较远,且具有两种抗性基因,难以对其进行基因改造,因此需要构建新型CAM工程菌株。文中通过CRISPR-Cas9基因编辑系统靶向切割2个位点,将ist和其正调控基因acyB2通过同源重组插入到SP生物合成基因簇附近且不参与SP合成的orf54基因下游,获得2种无外源抗性基因插入的CAM产生菌54IA-1和54IA-2,经发酵产物检测发现54IA-2菌株中的ISP产量明显高于54IA-1菌株。通过实时定量PCR (Quantitative real-time PCR,qPCR)检测证实54IA-2菌株中ist和acyB2基因以及部分SP生物合成基因的表达量均高于54IA-1菌株。为进一步获得高产菌株,以54IA-2为出发菌株,利用核糖体工程的方法筛选利福平(Rifampicin,RFP)抗性菌株,在RFP浓度为40μg/mL的抗性菌株中,ISP的产量明显提高,最高可达842.9μg/mL,比原始菌株提高约6倍。对其中7株菌的rpoB基因进行测序分析,每株菌的第576位丝氨酸都突变为丙氨酸,在其他错义突变中产量最高的菌株RFP40-6-8在第424位的谷氨酰胺突变为亮氨酸。综上所述,本研究应用CRISPR-Cas9系统成功构建了无任何抗性标记的新型CAM工程菌株54IA-1和54IA-2,并通过核糖体工程技术筛选获得了新型CAM高产菌株RFP40-6-8,为CAM工程菌株的进一步优化改造奠定了基础。 展开更多
关键词 可利霉素 4″-O-异戊酰基转移基因 CRISPR-Cas9系统 核糖体工程
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部