Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time ...Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.展开更多
In the past few years, support vector machines (SVMs) have been applied to many fields, such as pattern recognition and data mining, etc. However there still exist some problems to be solved. One of them is that the S...In the past few years, support vector machines (SVMs) have been applied to many fields, such as pattern recognition and data mining, etc. However there still exist some problems to be solved. One of them is that the SVM is very sensitive to outliers or noises because of over-fitting problem. In this paper, a fuzzy support vector regression (FSVR) method is presented to deal with this problem. Strategies based on k nearest neighbor (kNN) and support vector data description (SVDD) are adopted to set the fuzzy membership values of data points in FSVR.The proposed FSVR soft sensor models based on kNN and SVDD are employed to predict the concentration of 4-carboxy-benzaldehyde (4-CBA) in purified terephthalic acid (PTA) oxidation process. Simulation results indicate that the proposed method indeed reduces the effect of outliers and yields higher accuracy.展开更多
基金Supported by the special Funds for Major State Basic Research Program of China (973 Program) (No. 2002CB312200) the 863 Hi-Tech. Research and Development Program of China (No. 2001AA413130, No.2002AA412110)the Key Technologies R&D Programme of China (No. 2001BA201A04).
文摘Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.
基金National Key Technologies Research and Development Program in the 10th five-year plan,国家杰出青年科学基金
文摘In the past few years, support vector machines (SVMs) have been applied to many fields, such as pattern recognition and data mining, etc. However there still exist some problems to be solved. One of them is that the SVM is very sensitive to outliers or noises because of over-fitting problem. In this paper, a fuzzy support vector regression (FSVR) method is presented to deal with this problem. Strategies based on k nearest neighbor (kNN) and support vector data description (SVDD) are adopted to set the fuzzy membership values of data points in FSVR.The proposed FSVR soft sensor models based on kNN and SVDD are employed to predict the concentration of 4-carboxy-benzaldehyde (4-CBA) in purified terephthalic acid (PTA) oxidation process. Simulation results indicate that the proposed method indeed reduces the effect of outliers and yields higher accuracy.