Cytidine 5'-monophosphate(5'-CMP)is an essential nucleotide for additives.In this study,enhanced production of 5'-CMP was realized by the transformation of cytidine using co-immobilized di-enzymes,uridine-...Cytidine 5'-monophosphate(5'-CMP)is an essential nucleotide for additives.In this study,enhanced production of 5'-CMP was realized by the transformation of cytidine using co-immobilized di-enzymes,uridine-cytidine kinase(UCK)and acetate kinase(AcK).The immobilization yield of the enzyme had a clear correlation with the surface charges as zeta potential(ξ).Among them,ε-polylysinefunctionalized sepharose(SA-EPL,ξ=9.31 m V)showed high immobilization yield(78.8%),which was4.9-fold than that of nitrilotriacetic acid functionalized sepharose(SA-NTA,ξ=-12.6 m V).The residual activity of affinity co-immobilized enzyme(EPL-Ni/EPL@Ac K-UCK)was higher than 70.6%after recycled 10 times.Thus,this study provides an effective approach for the production of 5'-CMP with the advantages of low adenosine 5'-triphosphate(ATP)consumption,reduced side reactions,and improved reusability by co-immobilized UCK and Ac K on the functionalized Sepharose.展开更多
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
Objective:To investigate the multienzyine complex formation of human malaria parasite Plasmodium falciparum[P.falciparum)orotate phosphoribosyltransferase(OPRT)and orotidine5'-monophosphate decarboxylase(OMPDC),th...Objective:To investigate the multienzyine complex formation of human malaria parasite Plasmodium falciparum[P.falciparum)orotate phosphoribosyltransferase(OPRT)and orotidine5'-monophosphate decarboxylase(OMPDC),the fifth and sixth enzyme of the de novo pyrimidine biosynthetic palhway.Previously,we have clearly established that the two enzymes in the malaria parasite exist physically as a heterotetrameric(OPRT)_2(OMPDG)_2 complex containing two subunits each of OPRT and OMPDC.and that the complex have catalytic kinetic advantages over the monofunetional enzyme.Methods:Both enzymes were cloned and expressed as recombinant proteins.The protein-protein interaction in the enzyme complex was identified using bifunctionul chemical cross-linker,liquid chromatography-mass spectrometric analysis and homology modeling,Results:The unique insertions of low complexity region at the a 2 and a 5 helices of the parasite OMPDC,characterized by single amino acid repeat sequence which was not found in homologous proteins from other organisms,was located on the OPRT-OMPDC interface.The structural models for the protein-prolein interaction of the helerotetrameric(OPRT)_2(OMPDC)_2multienzyme complex were proposed.Conclusions:Based on the proteomic data and structural modeling,it is surmised that the human malaria parasite low complexity region is responsible for the OPRT-OMPDC interaction.The structural complex of the parasite enzymes,thus,represents an efficient functional kinetic advantage,which in line with co-localization principles of evolutional origin,and allosteric control in protein-protein-interactions.展开更多
目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的s...目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的shRNA(shRNA-METTL5)转染TNBC细胞后,用CCK-8、集落形成、伤口愈合以及Transwell实验分别检测细胞增殖活性、迁移与侵袭,Western blot检测Wnt/β-catenin信号关键蛋白的表达。构建异种移植瘤模型,验证敲降METTL5对TNBC细胞在体内生长以及Wnt/β-catenin信号活性的影响。结果METTL5在TNBC肿瘤组织和细胞系中表达上调(P<0.01)。敲降METTL5可抑制TNBC细胞的增殖、迁移和侵袭并降低了Wnt/β-catenin信号分子β-catenin、细胞周期蛋白(Cyclin)D1、基质金属蛋白酶(MMP)-2和MMP-7的表达(均P<0.01)。体内实验显示,敲降METTL5减缓了移植瘤生长和Wnt/β-catenin信号活性。结论敲降METTL5能抑制TNBC细胞的增殖、迁移与侵袭,其作用可能与抑制Wnt/β-catenin信号通路有关。展开更多
目的:研究溶质载体家族6成员9(solute carrier family 6 member 9,SLC6A9)表达对结直肠癌细胞增殖、迁移和5-氟尿嘧啶(5-fluorouracil,5-FU)药物敏感性的影响。方法:TCGA数据库分析、实时荧光定量PCR和Western blot分析检测SLC6A9在结...目的:研究溶质载体家族6成员9(solute carrier family 6 member 9,SLC6A9)表达对结直肠癌细胞增殖、迁移和5-氟尿嘧啶(5-fluorouracil,5-FU)药物敏感性的影响。方法:TCGA数据库分析、实时荧光定量PCR和Western blot分析检测SLC6A9在结肠癌组织、正常结肠细胞系(NCM460)和结直肠癌细胞系(SW620、HCT116、HT29、Lovo和SW480)中的表达。将SCL6A9过表达质粒及阴性对照(SLC6A9 OE、Vector)转染HT29细胞,将SCL6A9小干扰RNA及阴性对照(SLC6A9 siRNA1#、siRNA2#和Scramble)转染SW620细胞。划痕愈合实验和Transwell实验检测各组细胞的迁移、侵袭能力。Western blot和细胞免疫荧光检测EMT相关蛋白E-cadherin、Vimentin的表达水平。利用CCK-8法和构建裸鼠移植瘤模型检测SLC6A9过表达对结直肠癌细胞5-FU药物敏感性的影响。结果:与正常结肠组织和NCM460细胞相比,SLC6A9在结肠癌组织和结直肠癌细胞系中低表达(均P<0.05)。SLC6A9过表达引起E-cadherin蛋白表达增加,Vimentin蛋白水平降低,抑制结直肠癌细胞的迁移、侵袭(P<0.05)。SLC6A9低表达引起E-cadherin蛋白表达降低,Vimentin蛋白水平增加,促进结直肠癌细胞的迁移、侵袭能力(P<0.05)。SLC6A9过表达提高了5-FU的药物敏感性,并使肿瘤生长缓慢,质量减轻(P<0.05)。而SLC6A9低表达降低了5-FU的药物敏感性(P<0.05)。结论:SLC6A9过表达能够抑制结直肠癌细胞的迁移、侵袭和EMT进程,并增强5-FU对结直肠癌细胞的药物敏感性。展开更多
基金supported by grants from the National Key Research and Development Program of China(2021YFC2102805,2019YFD1101204)the National Natural Science Foundation of China(21878142,21776132)+3 种基金Key Research and Development Plan of Jiangsu Province(BE2020712)Key Research and Development Plan of Jiangsu Province(BE2019001)Jiangsu Natural Science Fund for Distinguished Young Scholars(BK20190035)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Cytidine 5'-monophosphate(5'-CMP)is an essential nucleotide for additives.In this study,enhanced production of 5'-CMP was realized by the transformation of cytidine using co-immobilized di-enzymes,uridine-cytidine kinase(UCK)and acetate kinase(AcK).The immobilization yield of the enzyme had a clear correlation with the surface charges as zeta potential(ξ).Among them,ε-polylysinefunctionalized sepharose(SA-EPL,ξ=9.31 m V)showed high immobilization yield(78.8%),which was4.9-fold than that of nitrilotriacetic acid functionalized sepharose(SA-NTA,ξ=-12.6 m V).The residual activity of affinity co-immobilized enzyme(EPL-Ni/EPL@Ac K-UCK)was higher than 70.6%after recycled 10 times.Thus,this study provides an effective approach for the production of 5'-CMP with the advantages of low adenosine 5'-triphosphate(ATP)consumption,reduced side reactions,and improved reusability by co-immobilized UCK and Ac K on the functionalized Sepharose.
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
基金supported in part by Faculty of Graduate School(to W.L)Faculty of Medicine(contract no. RAH/54(1) to J.K.),Chulalongkorn University
文摘Objective:To investigate the multienzyine complex formation of human malaria parasite Plasmodium falciparum[P.falciparum)orotate phosphoribosyltransferase(OPRT)and orotidine5'-monophosphate decarboxylase(OMPDC),the fifth and sixth enzyme of the de novo pyrimidine biosynthetic palhway.Previously,we have clearly established that the two enzymes in the malaria parasite exist physically as a heterotetrameric(OPRT)_2(OMPDG)_2 complex containing two subunits each of OPRT and OMPDC.and that the complex have catalytic kinetic advantages over the monofunetional enzyme.Methods:Both enzymes were cloned and expressed as recombinant proteins.The protein-protein interaction in the enzyme complex was identified using bifunctionul chemical cross-linker,liquid chromatography-mass spectrometric analysis and homology modeling,Results:The unique insertions of low complexity region at the a 2 and a 5 helices of the parasite OMPDC,characterized by single amino acid repeat sequence which was not found in homologous proteins from other organisms,was located on the OPRT-OMPDC interface.The structural models for the protein-prolein interaction of the helerotetrameric(OPRT)_2(OMPDC)_2multienzyme complex were proposed.Conclusions:Based on the proteomic data and structural modeling,it is surmised that the human malaria parasite low complexity region is responsible for the OPRT-OMPDC interaction.The structural complex of the parasite enzymes,thus,represents an efficient functional kinetic advantage,which in line with co-localization principles of evolutional origin,and allosteric control in protein-protein-interactions.
文摘目的:研究溶质载体家族6成员9(solute carrier family 6 member 9,SLC6A9)表达对结直肠癌细胞增殖、迁移和5-氟尿嘧啶(5-fluorouracil,5-FU)药物敏感性的影响。方法:TCGA数据库分析、实时荧光定量PCR和Western blot分析检测SLC6A9在结肠癌组织、正常结肠细胞系(NCM460)和结直肠癌细胞系(SW620、HCT116、HT29、Lovo和SW480)中的表达。将SCL6A9过表达质粒及阴性对照(SLC6A9 OE、Vector)转染HT29细胞,将SCL6A9小干扰RNA及阴性对照(SLC6A9 siRNA1#、siRNA2#和Scramble)转染SW620细胞。划痕愈合实验和Transwell实验检测各组细胞的迁移、侵袭能力。Western blot和细胞免疫荧光检测EMT相关蛋白E-cadherin、Vimentin的表达水平。利用CCK-8法和构建裸鼠移植瘤模型检测SLC6A9过表达对结直肠癌细胞5-FU药物敏感性的影响。结果:与正常结肠组织和NCM460细胞相比,SLC6A9在结肠癌组织和结直肠癌细胞系中低表达(均P<0.05)。SLC6A9过表达引起E-cadherin蛋白表达增加,Vimentin蛋白水平降低,抑制结直肠癌细胞的迁移、侵袭(P<0.05)。SLC6A9低表达引起E-cadherin蛋白表达降低,Vimentin蛋白水平增加,促进结直肠癌细胞的迁移、侵袭能力(P<0.05)。SLC6A9过表达提高了5-FU的药物敏感性,并使肿瘤生长缓慢,质量减轻(P<0.05)。而SLC6A9低表达降低了5-FU的药物敏感性(P<0.05)。结论:SLC6A9过表达能够抑制结直肠癌细胞的迁移、侵袭和EMT进程,并增强5-FU对结直肠癌细胞的药物敏感性。