The organization of the brain serotonergic system appears to have been highly conserved across the vertebrate subphylum. In fish as well as in other vertebrates, brain serotonin (5-HT), mainly acts as a neuromodulat...The organization of the brain serotonergic system appears to have been highly conserved across the vertebrate subphylum. In fish as well as in other vertebrates, brain serotonin (5-HT), mainly acts as a neuromodulator with complex effects on multiple functions. It is becoming increasingly clear that acute and chronic increase in brain 5-HT neurotransmission have very different effects. An acute 5-HT activation, which is seen in both winners and losers of agonistic interactions, could be related to a general arousal effect, whereas the chronic activation observed in subordinate fish is clearly linked to the behavioral inhibition displayed by these individuals. Fish displaying diver- gent stress coping styles (proactive vs. reactive) differ in 5-HT functions. In teleost fish, brain monoaminergic function is also related to life history traits.展开更多
Burying beetles Nicrophorus orbicollis exhibit facultative biparental care of young. To reproduce, a male-female burying beetle pair bury and prepare a small vertebrate carcass as food for its altricial young. During ...Burying beetles Nicrophorus orbicollis exhibit facultative biparental care of young. To reproduce, a male-female burying beetle pair bury and prepare a small vertebrate carcass as food for its altricial young. During a breeding bout, male and female behavior changes synchronously at appropriate times and is coordinated to provide effective care for offspring. Although the ecologicaJ and evolutionary factors that shape this remarkable reproductive plasticity are well characterized, the neuromodulation of parental behavior is poorly understood. Juvenile hormone levels rise dramat- ically at the time beetle parents accept and feed larvae, remain highly elevated during the stages of most active care and fall abruptly when care is terminated. However, hormonal fluctuations alone cannot account for this elaborate control of reproduction. The biogenic amines octopamine (OA), dopamine (DA), and serotonin (5-HT) mediate a diversity of insect reproductive and social behav- iors. In this study, we measured whole brain monoamine levels in individual male and female bury- ing beetles and compared OA, DA, and 5-HT profiles between breeding (parental) and nonbreed- ing, unmated beetles. Remarkably, after 24 h of care, when parental feeding rates begin to peak, DA brain levels increase in breeding beetles when compared to nonbreeding controls. In contrast, brain OA and 5-HT levels did not change significantly. These results provide the first evidence for a potential role of DA in the modulation of burying beetle parental behavior.展开更多
文摘The organization of the brain serotonergic system appears to have been highly conserved across the vertebrate subphylum. In fish as well as in other vertebrates, brain serotonin (5-HT), mainly acts as a neuromodulator with complex effects on multiple functions. It is becoming increasingly clear that acute and chronic increase in brain 5-HT neurotransmission have very different effects. An acute 5-HT activation, which is seen in both winners and losers of agonistic interactions, could be related to a general arousal effect, whereas the chronic activation observed in subordinate fish is clearly linked to the behavioral inhibition displayed by these individuals. Fish displaying diver- gent stress coping styles (proactive vs. reactive) differ in 5-HT functions. In teleost fish, brain monoaminergic function is also related to life history traits.
文摘Burying beetles Nicrophorus orbicollis exhibit facultative biparental care of young. To reproduce, a male-female burying beetle pair bury and prepare a small vertebrate carcass as food for its altricial young. During a breeding bout, male and female behavior changes synchronously at appropriate times and is coordinated to provide effective care for offspring. Although the ecologicaJ and evolutionary factors that shape this remarkable reproductive plasticity are well characterized, the neuromodulation of parental behavior is poorly understood. Juvenile hormone levels rise dramat- ically at the time beetle parents accept and feed larvae, remain highly elevated during the stages of most active care and fall abruptly when care is terminated. However, hormonal fluctuations alone cannot account for this elaborate control of reproduction. The biogenic amines octopamine (OA), dopamine (DA), and serotonin (5-HT) mediate a diversity of insect reproductive and social behav- iors. In this study, we measured whole brain monoamine levels in individual male and female bury- ing beetles and compared OA, DA, and 5-HT profiles between breeding (parental) and nonbreed- ing, unmated beetles. Remarkably, after 24 h of care, when parental feeding rates begin to peak, DA brain levels increase in breeding beetles when compared to nonbreeding controls. In contrast, brain OA and 5-HT levels did not change significantly. These results provide the first evidence for a potential role of DA in the modulation of burying beetle parental behavior.