Let (X, ρ) be a metric space and ↓USCC(X) and ↓CC(X) be the families of the regions below all upper semi-continuous compact-supported maps and below all continuous compact-supported maps from X to I = [0,1], respec...Let (X, ρ) be a metric space and ↓USCC(X) and ↓CC(X) be the families of the regions below all upper semi-continuous compact-supported maps and below all continuous compact-supported maps from X to I = [0,1], respectively. With the Hausdorff-metric, they are topological spaces. In this paper, we prove that, if X is an infinite compact metric space with a dense set of isolated points, then (↓USCC(X), ↓CC(X)) ≈ (Q, c 0 ∪ (Q Σ)), i.e., there is a homeomorphism h:↓USCC(X) → Q such that h(↓CC(X)) = c 0 ∪ (Q Σ), where Q = [?1,1]ω, Σ = {(x n ) n∈? ∈ Q: sup|x n | < 1} and c 0 = {(x n ) n∈? ∈ Σ: lim n→+∞ x n = 0}. Combining this statement with a result in our previous paper, we have $$ ( \downarrow USCC(X), \downarrow CC(X)) \approx \left\{ \begin{gathered} (Q,c_0 \cup (Q\backslash \Sigma )), if the set of isolanted points is dense in X, \hfill \\ (Q,c_0 ),otherwise, \hfill \\ \end{gathered} \right. $$ if X is an infinite compact metric space. We also prove that, for a metric space X, (↓USCC(X), ↓CC(X)) ≈ (Σ, c 0) if and only if X is non-compact, locally compact, non-discrete and separable.展开更多
We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property...We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property (cd-AP), which means that each map f:K→X of a compact polyhedron can be approximated by a map with the countable-dimensional image. As an application we prove that a space X with DDP and cd-AP is a Q-manifold if some finite power of X is a Q-manifold. If some finite power of a space X with cd-AP is a Q-manifold, then X2 and X×[0,1] are Q-manifolds as well. We construct a countable familyχof spaces with DDP and cd-AP such that no space X∈χis homeomorphic to the Hilbert cube Q whereas the product X×Y of any different spaces X, Y∈χis homeomorphic to Q. We also show that no uncountable familyχwith such properties exists.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10471084)
文摘Let (X, ρ) be a metric space and ↓USCC(X) and ↓CC(X) be the families of the regions below all upper semi-continuous compact-supported maps and below all continuous compact-supported maps from X to I = [0,1], respectively. With the Hausdorff-metric, they are topological spaces. In this paper, we prove that, if X is an infinite compact metric space with a dense set of isolated points, then (↓USCC(X), ↓CC(X)) ≈ (Q, c 0 ∪ (Q Σ)), i.e., there is a homeomorphism h:↓USCC(X) → Q such that h(↓CC(X)) = c 0 ∪ (Q Σ), where Q = [?1,1]ω, Σ = {(x n ) n∈? ∈ Q: sup|x n | < 1} and c 0 = {(x n ) n∈? ∈ Σ: lim n→+∞ x n = 0}. Combining this statement with a result in our previous paper, we have $$ ( \downarrow USCC(X), \downarrow CC(X)) \approx \left\{ \begin{gathered} (Q,c_0 \cup (Q\backslash \Sigma )), if the set of isolanted points is dense in X, \hfill \\ (Q,c_0 ),otherwise, \hfill \\ \end{gathered} \right. $$ if X is an infinite compact metric space. We also prove that, for a metric space X, (↓USCC(X), ↓CC(X)) ≈ (Σ, c 0) if and only if X is non-compact, locally compact, non-discrete and separable.
基金This work was supported by the Slovenian-Ukrainian(Grant No.SLO-UKR 04-06/07)
文摘We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property (cd-AP), which means that each map f:K→X of a compact polyhedron can be approximated by a map with the countable-dimensional image. As an application we prove that a space X with DDP and cd-AP is a Q-manifold if some finite power of X is a Q-manifold. If some finite power of a space X with cd-AP is a Q-manifold, then X2 and X×[0,1] are Q-manifolds as well. We construct a countable familyχof spaces with DDP and cd-AP such that no space X∈χis homeomorphic to the Hilbert cube Q whereas the product X×Y of any different spaces X, Y∈χis homeomorphic to Q. We also show that no uncountable familyχwith such properties exists.