Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work ...Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work demonstrated that HBQs and hydrogen peroxide(H_2O_2)together generated oxidative DNA damage via a metal-independent and intercalationenhanced oxidation mechanism in vitro. This study further investigated the efficiency of various HBQs to induce oxidative DNA damage in T24 bladder cancer cells. Compared with T24 cells without treatment(3.1 lesions per 10~6 d G), the level of 8-oxo-7,8-dihydro-2′-deoxyguanosine(8-oxod G) significantly increased by 1.4, 3.2, 8.8, and 9.2 times after treatment with tetrabromo-1,4-benzoquinone(TBBQ), terachloro-1,4-benzoquinone(TCBQ),2,6-dichloro-1,4-benzoquinone(2,6-DCBQ) and 2,5-dichloro-1,4-benzoquinone(2,5-DCBQ) for24 hr, respectively. Interestingly, we found that the oxidative potency of HBQs in T24 cells(2,5-DCBQ ≈ 2,6-DCBQ 〉 TCBQ 〉 TBBQ) is inconsistent with that of in vitro ds DNA oxidation(TCBQ 〉 TBBQ 〉 2,5-DCBQ 〉 2,6-DCBQ), suggesting HBQs induce oxidative lesions in cellular genomic DNA probably involved with a complex mechanism.展开更多
基金supported by the Ministry of Science and Technology of China(Nos.2016YFA0203102,2016YFC0900301 and 2014CB932003)the National Natural Science Foundation of China(Nos.21375142,21321004,and 21435008)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14030000)
文摘Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work demonstrated that HBQs and hydrogen peroxide(H_2O_2)together generated oxidative DNA damage via a metal-independent and intercalationenhanced oxidation mechanism in vitro. This study further investigated the efficiency of various HBQs to induce oxidative DNA damage in T24 bladder cancer cells. Compared with T24 cells without treatment(3.1 lesions per 10~6 d G), the level of 8-oxo-7,8-dihydro-2′-deoxyguanosine(8-oxod G) significantly increased by 1.4, 3.2, 8.8, and 9.2 times after treatment with tetrabromo-1,4-benzoquinone(TBBQ), terachloro-1,4-benzoquinone(TCBQ),2,6-dichloro-1,4-benzoquinone(2,6-DCBQ) and 2,5-dichloro-1,4-benzoquinone(2,5-DCBQ) for24 hr, respectively. Interestingly, we found that the oxidative potency of HBQs in T24 cells(2,5-DCBQ ≈ 2,6-DCBQ 〉 TCBQ 〉 TBBQ) is inconsistent with that of in vitro ds DNA oxidation(TCBQ 〉 TBBQ 〉 2,5-DCBQ 〉 2,6-DCBQ), suggesting HBQs induce oxidative lesions in cellular genomic DNA probably involved with a complex mechanism.