In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove...In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.展开更多
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met...Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.展开更多
In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator wh...In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator which has optimal approximation properties and preserves positivity. With the help of the interpolation operator the upper and lower bounds were obtained.展开更多
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ...The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.展开更多
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem...In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.展开更多
Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-BabuSka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Gal...Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-BabuSka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit estimators can be computed efficiently and directly, which can be used as error indicators for adaptation. Unlike in the reference [10], we obtain the error estimators in L^2 (L^2) norm by using duality techniques instead of in L^2(H^1) norm.展开更多
Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which ...Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.展开更多
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that ...This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.展开更多
In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori er...In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.展开更多
A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension...A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in L_2-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.展开更多
In this paper, the superconvergence results are derived for a class of boundary control problems governed by Stokes equations. We derive superconvergence results for both the control and the state approximation. Base ...In this paper, the superconvergence results are derived for a class of boundary control problems governed by Stokes equations. We derive superconvergence results for both the control and the state approximation. Base on superconvergence results, we obtain asymptotically exact a posteriori error estimates.展开更多
Residual-based a posteriori error estimate for conforming finite element solutions of incompressible Navier-Stokes equations, which is computed with a new two-level method that is different from Volker John, is derive...Residual-based a posteriori error estimate for conforming finite element solutions of incompressible Navier-Stokes equations, which is computed with a new two-level method that is different from Volker John, is derived. A posteriori error estimate contains additional terms in comparison to the estimate for the solution obtained by the standard finite element method. The importance of the additional terms in the error estimates is investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than the convergence of discrete solution. The two-level method aims to solve the nonlinear problem on a coarse grid with less computational work, then to solve the linear problem on a fine grid, which is superior to the usual finite element method solving a similar nonlinear problem on the fine grid.展开更多
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time ...This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.展开更多
This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error...This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.展开更多
We construct and analyze conservative local discontinuous Galerkin(LDG)methods for the Generalized Korteweg-de-Vries equation.LDG methods are designed by writing the equation as a system and performing separate approx...We construct and analyze conservative local discontinuous Galerkin(LDG)methods for the Generalized Korteweg-de-Vries equation.LDG methods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives.The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuous solution,and a posteriori error estimates for a fully discrete approximation that is based on the idea of dispersive reconstruction.Numerical experiments are provided to verify the theoretical estimates.展开更多
In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then...In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then based on the discretization scheme,reliable a posteriori error estimates for the spectral approximation are derived.Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator.展开更多
In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error est...In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results.展开更多
In order to obtain an expected numerical solution, a fully discrete discontinuous Galerkin method is applied to a kind of reactive transport problems in two dimension. That is to say, the space variable is discretized...In order to obtain an expected numerical solution, a fully discrete discontinuous Galerkin method is applied to a kind of reactive transport problems in two dimension. That is to say, the space variable is discretized with the symmetric interior penalty Calerkin method (SIPG), and the time variable is done with the backward Euler method. Making use of the duality technique, hp approximation properties and the interpolation theory, a residual-type a posteriori error estimation is achieved, which can be used for adaptivity. Compared with the analyses of semi-discretization, the current presentation is more challenging and more significant.展开更多
In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in ...In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconver- gence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh re- finement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. These results are used to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. We further prove that, for smooth solutions, the a posteriori LDG error estimates, which were constructed by the author in an earlier paper, converge, at a fixed time, to the true spatial errors in the L2-norm at (.9(hp+2) rate. Finally, we prove that the global effectivity indices in the L2-norm converge to unity at (9(h) rate. These results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using PP polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results.展开更多
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.
文摘Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
基金Project supported by National Natural Science Foundation ofChina (Grant No .10471089)
文摘In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator which has optimal approximation properties and preserves positivity. With the help of the interpolation operator the upper and lower bounds were obtained.
基金This work was supported in part by the National Science Foundation under grant DMS-1620288。
文摘The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.
基金the National Basic Research Programthe National Natural Science Foundation of China(Grant No.2005CB321703)+2 种基金Scientific Research Fund of Hunan Provincial Education Departmentthe Outstanding Youth Scientist of the National Natural Science Foundation of China(Grant No.10625106)the National Basic Research Program of China(Grant No.2005CB321701)
文摘In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
基金This work is supported by Program for New Century Excellent Talents in University of China State Education Ministry NCET-04-0776, National Science Foundation of China, the National Basic Research Program under the Grant 2005CB321703, and the key project of China State Education Ministry and Hunan Education Commission.
文摘Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-BabuSka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit estimators can be computed efficiently and directly, which can be used as error indicators for adaptation. Unlike in the reference [10], we obtain the error estimators in L^2 (L^2) norm by using duality techniques instead of in L^2(H^1) norm.
基金the National Natural Science Foundation of China(Grant No.10771150)the National Basic Research Program of China(Grant No.2005CB321701)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0584)
文摘Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.
基金the NSF grants DMS-0410266 and DMS-0710831the China National Basic Research Program under the grant 2005CB321701+1 种基金the Program for the New Century Outstanding Talents in Universities of Chinathe Natural Science Foundation of Jiangsu Province under the grant BK2006511
文摘This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.
基金National Nature Science Foundation under Grants 60474027 and 10771211the National Basic Research Program under the Grant 2005CB321701
文摘In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.
基金The authors are grateful for the anonymous referees for their helpful com- ments. This work was supported in part by The Education Science Foundation of Chongqing (KJ120420), National Natural Science Foundation of China (11171239), The Project-sponsored by Scientific Research Foundation for the Returned Overseas Chinese Scholars and Open Fund of Key Laboratory of Mountain Hazards and Earth Surface Processes, CAS.
文摘A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in L_2-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.
基金The research was supported by the Special Funds for Major State Basic Research Projects (No. G2000067102), National Natural Science Foundation of China (No. 60474027).
文摘In this paper, the superconvergence results are derived for a class of boundary control problems governed by Stokes equations. We derive superconvergence results for both the control and the state approximation. Base on superconvergence results, we obtain asymptotically exact a posteriori error estimates.
基金The research is SUpported by the NatlOllal Science Foundation of China(No.10371096)
文摘Residual-based a posteriori error estimate for conforming finite element solutions of incompressible Navier-Stokes equations, which is computed with a new two-level method that is different from Volker John, is derived. A posteriori error estimate contains additional terms in comparison to the estimate for the solution obtained by the standard finite element method. The importance of the additional terms in the error estimates is investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than the convergence of discrete solution. The two-level method aims to solve the nonlinear problem on a coarse grid with less computational work, then to solve the linear problem on a fine grid, which is superior to the usual finite element method solving a similar nonlinear problem on the fine grid.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provinical Innovation Foundation for Postgraduate(lx2009 B120)。
文摘This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.
文摘This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.
基金The research of O.Karakashian was partially supported by National Science Foundation grant DMS-1216740The research of Y.Xing was partially supported by National Science Foundation grants DMS-1216454 and DMS-1621111.
文摘We construct and analyze conservative local discontinuous Galerkin(LDG)methods for the Generalized Korteweg-de-Vries equation.LDG methods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives.The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuous solution,and a posteriori error estimates for a fully discrete approximation that is based on the idea of dispersive reconstruction.Numerical experiments are provided to verify the theoretical estimates.
基金supported by the State Key Program of National Natural Science Foundation of China(No.11931003)National Natural Science Foundation of China(Nos.41974133,11671157 and 11971410)supported by the Innovation Project of Graduate School of South China Normal University(No.2018LKXM008).
文摘In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then based on the discretization scheme,reliable a posteriori error estimates for the spectral approximation are derived.Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator.
基金supported by the National Basic Research Program of P.R.China under the grant 2005CB321703the NSFC under the grants:10441005 and 10571108the Research Fund for Doctoral Program of High Education by China State Education Ministry
文摘In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results.
基金supported by Hunan Provincial Natural Science Foundation of China under Grant No. 10JJ3021Scientific Research Fund of Hunan Provincial Education Department under Grant No.11B032the Planned Science and Technology Project of Hunan Province and Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In order to obtain an expected numerical solution, a fully discrete discontinuous Galerkin method is applied to a kind of reactive transport problems in two dimension. That is to say, the space variable is discretized with the symmetric interior penalty Calerkin method (SIPG), and the time variable is done with the backward Euler method. Making use of the duality technique, hp approximation properties and the interpolation theory, a residual-type a posteriori error estimation is achieved, which can be used for adaptivity. Compared with the analyses of semi-discretization, the current presentation is more challenging and more significant.
文摘In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconver- gence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh re- finement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. These results are used to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. We further prove that, for smooth solutions, the a posteriori LDG error estimates, which were constructed by the author in an earlier paper, converge, at a fixed time, to the true spatial errors in the L2-norm at (.9(hp+2) rate. Finally, we prove that the global effectivity indices in the L2-norm converge to unity at (9(h) rate. These results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using PP polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results.