期刊文献+
共找到269,752篇文章
< 1 2 250 >
每页显示 20 50 100
改进邻域扩展A^(*)算法的移动机器人路径规划
1
作者 董雅文 杨静雯 +1 位作者 张宝锋 赵小惠 《机械设计与制造》 北大核心 2025年第1期291-295,共5页
为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数... 为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数,最后对所得路径进行二次平滑处理以剔除冗余节点并削弱路径尖峰的剧烈程度。仿真结果表明,改进邻域扩展A^(*)算法在路径长度、搜索节点数量、规划时间上均优于传统A^(*)算法,且路径无尖峰转角,整体趋势平缓。 展开更多
关键词 点对点路径规划 A^(*)算法 邻域扩展
下载PDF
基于改进A^(*)平滑性路径规划算法研究
2
作者 王云亮 张赛 吴艳娟 《计算机应用与软件》 北大核心 2025年第1期258-263,276,共7页
为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时... 为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时剔除非必要的节点。最后将A^(*)算法结合Bezier曲线对生成路径进行平滑性处理。为测试改进A^(*)算法的可行性与有效性,在多种不同尺寸规格的栅格地图中和移动机器人平台上进行对比仿真实验。结果表明,改进后A^(*)算法相比于原A^(*)算法生成扩展节点数量更少、寻路时间缩短、执行效率更高,改进后A^(*)算法路径规划性能得到明显提升。 展开更多
关键词 移动机器人 A^(*)算法 贝塞尔曲线 路径规划
下载PDF
倒置A^(2)/O+A生化法+膜法+磁混凝法污水处理工程实例
3
作者 计建洪 耿学坚 +2 位作者 王丽聪 杭彩云 庄惠生 《印染》 北大核心 2025年第1期64-67,共4页
采用“倒置A^(2)/O+A生化法+膜法+磁混凝物化法”组合工艺处理污水,分析了工艺特点,并详述了主要构筑物及设备参数。该组合工艺处理效果优良,除磷脱氮效果好,出水COD、TP、NH_(3)-N、TN月均值分别为28、0.2、0.3、6.06mg/L,达到了DB32/1... 采用“倒置A^(2)/O+A生化法+膜法+磁混凝物化法”组合工艺处理污水,分析了工艺特点,并详述了主要构筑物及设备参数。该组合工艺处理效果优良,除磷脱氮效果好,出水COD、TP、NH_(3)-N、TN月均值分别为28、0.2、0.3、6.06mg/L,达到了DB32/1072—2018《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》其他区域污染物排放标准,其中COD、TP和NH_(3)-N三个指标达到了GB3838—2002《地表水环境质量标准》Ⅳ类水排放标准。 展开更多
关键词 废水处理 倒置A^(2)/O 除磷脱氮 磁混凝沉淀 膜法
下载PDF
新型倒置A^(2)/O耦联MBR组合工艺处理农村低C/N废水的研究
4
作者 韩卫萍 盖磊 《水处理技术》 CAS 北大核心 2025年第1期114-119,共6页
针对农村低C/N污水污染物和营养盐去除率差的问题,以倒置A^(2)/O耦联膜生物反应器(MBR)组合工艺为探究对象,通过控制进水污染物浓度,在中温条件下考察了有机负荷(OLR)对倒置A^(2)/O耦联MBR组合工艺处理农村低C/N污水的影响。结果表明,OL... 针对农村低C/N污水污染物和营养盐去除率差的问题,以倒置A^(2)/O耦联膜生物反应器(MBR)组合工艺为探究对象,通过控制进水污染物浓度,在中温条件下考察了有机负荷(OLR)对倒置A^(2)/O耦联MBR组合工艺处理农村低C/N污水的影响。结果表明,OLR由150 mg/L提高至450 mg/L时,总氮(TN)和溶解性磷酸盐(SOP)去除率分别由67.6%和86.6%提高至72.4%和94.3%,进一步提高OLR降低了组合工艺对污染物和营养盐的去除。此外,OLR能影响新工艺内污泥特征,提高OLR促进了胞外聚合物(EPS)分泌,尤其在OLR为600 mg/L组别内,EPS含量提高至139.6 mg/g。进水OLR对缺氧池内EPS的影响要大于其对厌氧池内EPS的影响。OLR能影响新工艺内污染物和营养盐去除相关关键酶的活性,当OLR为450 mg/L时,污染物和营养盐去除相关关键活性酶最强。研究结果为农村低C/N污水的高效处理提供了理论依据和数据支撑。 展开更多
关键词 农村低C/N污水 倒置A^(2)/O MBR 胞外聚合物 关键酶
下载PDF
随机地图下改进A^(*)路径规划算法研究
5
作者 林硕 金恒江 +1 位作者 韩忠华 赵剑明 《制造技术与机床》 北大核心 2025年第2期43-47,共5页
为解决传统算法在规划AGV(automated guided vehicles)路径时存在的节点多、路径不平滑和拓展范围广等问题,提出了一种改进A*算法。首先,采用栅格法建立环境信息;其次,通过加权后的障碍物比例对启发函数进行改进,同时增加防碰撞函数以... 为解决传统算法在规划AGV(automated guided vehicles)路径时存在的节点多、路径不平滑和拓展范围广等问题,提出了一种改进A*算法。首先,采用栅格法建立环境信息;其次,通过加权后的障碍物比例对启发函数进行改进,同时增加防碰撞函数以降低碰撞概率;最后,对所提出的改进算法进行拐角优化,减少AGV实际作业时的转弯次数。实验数据表明,简单环境下改进A^(*)算法的遍历节点数较两种传统算法分别缩短了85.3%、55.9%;复杂环境下改进A*算法的遍历节点数较两种传统算法缩短94.5%、70.3%。同时拐点数量减少、路径更加平滑、路径规划时间也大幅缩短,提高了运行效率并有效降低碰撞概率。 展开更多
关键词 路径规划 改进A^(*)算法 环境建模 拐角优化 防碰撞
下载PDF
基于改进A^(*)算法的自适应路径规划研究
6
作者 张宸威 黄平 +5 位作者 张国恒 金志华 陈钰杰 宗蔓祺 迟家俊 邱志川 《通信与信息技术》 2025年第1期43-45,122,共4页
针对传统A^(*)算法在启发式函数选择和局部障碍物应对方面的局限,提出了两项关键改进。首先,引入动态加权系数,优化启发式函数,减少搜索节点,提升效率,避免局部最优问题。其次,融合触须法,实现全局与局部规划的协同,提高路径规划的精度... 针对传统A^(*)算法在启发式函数选择和局部障碍物应对方面的局限,提出了两项关键改进。首先,引入动态加权系数,优化启发式函数,减少搜索节点,提升效率,避免局部最优问题。其次,融合触须法,实现全局与局部规划的协同,提高路径规划的精度和鲁棒性。仿真实验表明,改进后的算法在路径长度、搜索效率和鲁棒性上均优于传统A^(*)算法,特别是在复杂火场环境中消防机器搜索节点相较于改进前减少约60%。这一研究对提升消防机器人导航性能具有重要意义,并为其他路径规划领域提供新思路。 展开更多
关键词 消防机器人 路径规划 A^(*)算法 触须法 动态加权系数
下载PDF
一种改进型A^(*)算法的AGV路径规划
7
作者 洪楚桐 郭彦青 +2 位作者 张盼盼 康瑞 马鹏豪 《机械设计与制造工程》 2025年第1期51-54,共4页
A^(*)算法是一种常见的AGV路径规划算法,然而当AGV的运动环境很复杂时,A^(*)算法的效率会显著下降。针对传统A^(*)算法存在路径搜索效率低、路径转折次数多等问题,提出一种改进型A^(*)算法。首先基于栅格法对地图进行建模,随后对A^(*)... A^(*)算法是一种常见的AGV路径规划算法,然而当AGV的运动环境很复杂时,A^(*)算法的效率会显著下降。针对传统A^(*)算法存在路径搜索效率低、路径转折次数多等问题,提出一种改进型A^(*)算法。首先基于栅格法对地图进行建模,随后对A^(*)算法的启发函数和邻域搜索策略展开研究,引入动态加权机制改进启发函数,并在此基础上加入动态五邻域搜索策略。最后在Python编程环境下,分别使用两种不同障碍率的栅格地图对改进型A^(*)算法与传统A^(*)算法进行对比仿真实验。仿真结果表明,改进型A^(*)算法搜索时间平均缩短了69.3%,路径拓展节点数平均减少了74.5%,可以明显减少转弯次数,提升整体效率,尤其是在障碍率较高时优化效果更明显;引入贝塞尔曲线后,可使移动路径更加平滑。 展开更多
关键词 自动导向车 路径规划 改进型A^(*)算法 动态加权 搜索邻域 贝塞尔曲线
下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
8
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
下载PDF
基于多尺度A^(*)与优化DWA算法融合的移动机器人路径规划
9
作者 许建民 宋雷 +2 位作者 邓冬冬 陈尧箬 杨炜 《系统仿真学报》 北大核心 2025年第1期257-270,共14页
为解决传统A^(*)算法与动态窗口法面对大规模复杂环境路径规划时,计算和时间成本的急剧上升以及灵活性较差的问题,提出了一种基于多尺度地图法的A^(*)算法和改进DWA算法的融合算法。建立多尺度地图集并在A^(*)算法的启发函数中增加障碍... 为解决传统A^(*)算法与动态窗口法面对大规模复杂环境路径规划时,计算和时间成本的急剧上升以及灵活性较差的问题,提出了一种基于多尺度地图法的A^(*)算法和改进DWA算法的融合算法。建立多尺度地图集并在A^(*)算法的启发函数中增加障碍物占比因子,在粗尺度地图利用A^(*)算法计算最优路径,将其映射到细尺度地图上进行二次A^(*)算法并通过Floyd算法进行节点优化,删除冗余节点、提高路径的平滑度。增加了航向角自适应调整策略和停车等待状态来优化动态窗口法,提高灵活性。将A^(*)算法的关键点作为动态窗口法的局部目标点,并在轨迹上有障碍物时再次规划,实现两种算法的融合。ROS仿真和实车实验结果表明改进的A^(*)算法计算时间显著减少,在20 m×40 m的地图中减少98%,改进的融合算法大幅提高了机器人在动态环境下的平滑性和灵活性,可以有效解决传统融合算法存在的问题。 展开更多
关键词 移动机器人 路径规划 A^(*)算法 动态窗口法 ROS
下载PDF
改进A^(*)算法的无人车路径规划
10
作者 王海群 甘成通 王福斌 《机械设计与制造》 北大核心 2025年第1期117-120,共4页
近年来随着科技的发展私家车不断的普及,汽车数量的不断增加导致交通事故频发,面对这一问题大量学者在不断地进行研究,5G的出现使得无人自动驾驶的实现成为了可能,路径规划是无人驾驶技术的重点研究内容。目前大部分路径规划采用的是传... 近年来随着科技的发展私家车不断的普及,汽车数量的不断增加导致交通事故频发,面对这一问题大量学者在不断地进行研究,5G的出现使得无人自动驾驶的实现成为了可能,路径规划是无人驾驶技术的重点研究内容。目前大部分路径规划采用的是传统的A^(*)算法,但该算法存在搜索范围大、时间长、路径规划效率较低、损耗较大以及路径拐点较多等问题无法规划出最佳路径。这里在此基础上加以改进,通过建立栅格地图,构建新的动态衡量启发式A^(*)算法函数,通过新算法所得新路径再进行路经拐角优化,最后对改进的算法进行仿真并分析和比较,证明了新改进的算法和经过拐角路径优化可得到最佳路径。 展开更多
关键词 无人自动驾驶 路径规划 栅格地图 A^(*)算法 动态衡量启发式函数 拐角优化
下载PDF
移动机器人用改进的双向A^(*)二次路径规划算法
11
作者 李炯逸 李强 +2 位作者 张新闻 Zin Myo Htet 蔡永斌 《系统仿真学报》 北大核心 2025年第2期498-507,共10页
针对传统A*算法存在规划路径与障碍物相交、规划的路径拐点多和搜索时间长等问题,提出了一种面向室内环境改进的双向A^(*)二次路径规划算法。通过对地图进行膨胀处理,解决了规划路径与障碍物相交的问题;通过引入新的启发函数和双向扩展... 针对传统A*算法存在规划路径与障碍物相交、规划的路径拐点多和搜索时间长等问题,提出了一种面向室内环境改进的双向A^(*)二次路径规划算法。通过对地图进行膨胀处理,解决了规划路径与障碍物相交的问题;通过引入新的启发函数和双向扩展等方法,提高了双向A^(*)算法的搜索速度和精度;引入转弯代价函数和自适应权重,减少了拐点数量;利用二次规划和二阶贝塞尔曲线对路径进行平滑处理,删除了允余节点和不符合实际移动的拐角。仿真结果表明:算法的搜索速度提高了55.7%,路径长度缩短了15.6%,拐点和拐角减小了31.6%和56.1%。 展开更多
关键词 评价函数 路径平滑 双向A^(*)算法 二次规划 路径规划 移动机器人
下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
12
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network
13
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
下载PDF
基于自适应启发函数和逆向寻优策略的改进A^(*)移动机器人路径规划算法
14
作者 宋卫猛 王毅 《计算机测量与控制》 2025年第1期173-180,共8页
移动机器人大多数情况都是在室外和室内障碍物环境下进行移动;因此,在这些障碍物环境中,高效率、短路径和少转折点的路径规划算法对移动机器人导航至关重要;针对在室外和室内障碍物环境下A^(*)算法无法同时保持高效率、短路径和少转折... 移动机器人大多数情况都是在室外和室内障碍物环境下进行移动;因此,在这些障碍物环境中,高效率、短路径和少转折点的路径规划算法对移动机器人导航至关重要;针对在室外和室内障碍物环境下A^(*)算法无法同时保持高效率、短路径和少转折点的问题,提出了一种基于自适应启发函数和逆向寻优策略的改进A^(*)算法;通过增加自适应权重系数、引入父节点的影响力并对搜索方向进行筛选,减少了搜索面积,提高了搜索效率;采用逆向寻优策略对路径进行进一步优化,缩短了路径长度,减少了转折点数量;为了评估改进A^(*)算法的性能,在仿真实验中设置常见的室外和室内障碍物环境并与A^(*)算法对比;仿真实验结果表明,改进A^(*)算法在效率、路径长度和转折点数量方面具有显著优势,能够有效地应用于移动机器人的导航中。 展开更多
关键词 移动机器人 路径规划 A^(*)算法 自适应启发函数 筛选搜索方向 路径优化
下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China
15
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
下载PDF
A^(2)B音频总线的EMC干扰分析
16
作者 覃宝山 孙志颖 +3 位作者 付国良 黄妍琼 武晓宇 刘广浩 《汽车电器》 2025年第1期79-81,共3页
车辆在进行整车EMC抗扰度试验中出现音频干扰现象,经过试验分析、试验车拆解分析以及整车音频总线的EMC仿真分析,确认不同工艺下A^(2)B音频总线的抗扰度能力差异,得出影响音频总线的抗扰能力的因素为A^(2)B线束接插件、双绞线未并拢长... 车辆在进行整车EMC抗扰度试验中出现音频干扰现象,经过试验分析、试验车拆解分析以及整车音频总线的EMC仿真分析,确认不同工艺下A^(2)B音频总线的抗扰度能力差异,得出影响音频总线的抗扰能力的因素为A^(2)B线束接插件、双绞线未并拢长度和非双绞间距。在整车研发过程中出现A^(2)B音频总线受干扰的情况,通过优化A^(2)B总线的制线工艺,以解决整车音频干扰问题,提升A2B音频系统的整体抗扰度。 展开更多
关键词 A^(2)B音频总线 智能座舱 干扰噪音 电磁兼容
下载PDF
基于A^(2)/O技术的煤矿生活污水处理系统
17
作者 靳鑫 《煤》 2025年第1期92-95,共4页
古城煤矿近年来一直致力于节能减排增效等技术的研究、试验和推广应用。文章结合古城煤矿生活污水的特点,对比当前国内煤矿生活污水处理典型技术,设计了一套基于A^(2)/O技术,辅以智慧化曝气装置的生活污水处理系统,为提高古城煤矿未来... 古城煤矿近年来一直致力于节能减排增效等技术的研究、试验和推广应用。文章结合古城煤矿生活污水的特点,对比当前国内煤矿生活污水处理典型技术,设计了一套基于A^(2)/O技术,辅以智慧化曝气装置的生活污水处理系统,为提高古城煤矿未来生活污水处理能效,促进节能减排提供有益参考。 展开更多
关键词 煤矿生活污水 污水处理系统 智慧化曝气装置 A^(2)/O技术
下载PDF
Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms
18
作者 Mohamad Khairulamirin Md Razali MasriAyob +5 位作者 Abdul Hadi Abd Rahman Razman Jarmin Chian Yong Liu Muhammad Maaya Azarinah Izaham Graham Kendall 《Computer Modeling in Engineering & Sciences》 2025年第2期1233-1288,共56页
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic... The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains. 展开更多
关键词 HYPER-HEURISTICS search algorithms optimization heuristic selection move acceptance learning DIVERSIFICATION parameter control
下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
19
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
20
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部