CHC Trailing suction hopper dredgers (TSHD) have been widely used in dredging industry. In order to simulate the dredging process accurately, a mathematical model for a swell compensator used in TSHD is proposed, and ...CHC Trailing suction hopper dredgers (TSHD) have been widely used in dredging industry. In order to simulate the dredging process accurately, a mathematical model for a swell compensator used in TSHD is proposed, and a friendly simulation model based on the Automated Dynamic Analysis of Mechanical Systems (ADAMS) is built to test and validate the mathematical model for the swell compensator. The factors influencing the dynamic behavior of the TSHD suction pipe system, such as the mo-tion of the vessel in an unquiet situation with different water current velocities, seabed profiles, seabed soil hardness and the forces acting on the suction pipe system, have been taken into consideration. The simulation results show that they fit in with the operat-ing practice qualitatively.展开更多
An adaptive wheel-legged shape reconfigurable mobile robot,based on a scissor-like mechanism,is proposed for an obstacle detecting and surmounting robot,moving on complex terrain.The robot can dynamically adjust its o...An adaptive wheel-legged shape reconfigurable mobile robot,based on a scissor-like mechanism,is proposed for an obstacle detecting and surmounting robot,moving on complex terrain.The robot can dynamically adjust its own shape,according to the environment,realizing a transformation of wheel shape into leg shape and vice versa.Each wheel-legged mechanism has one degree of freedom,which means that only the relative motion of the inner and outer discs is needed to achieve the transformation of the shape into a wheel or a leg.First,the force analysis of the conversion process of the wheel-legged mechanism is carried out,while the relationship between the driving torque and the friction factor in the non-conversion trigger stage and in the conversion trigger stage is obtained.The results showed that the shape conversion can be better realized by increasing the friction factor of the trigger point.Next,the kinematics analysis of the robot,including climbing the obstacles,stairs and gully,is carried out.The motion of the spokes tip is obtained,in order to derive the folding ratio and the surmountable obstacle height of the wheel-legged mechanism.The parameters of the wheel-legged structure are optimized,to obtain better stability and obstacle climbing ability.Finally,a dynamic simulation model is established by ADAMS,to verify the obstacle climbing performance and gait rationality of the robot,in addition to a prototype experiment.The results showed that the surmountable obstacle height of the robot is about3.05 times the spoke radius.The robot has the stability of a traditional wheel mechanism and the obstacle surmount performance of a leg mechanism,making it more suitable for field reconnaissance and exploration missions.展开更多
Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating ...Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating the impact of these factors on crashes and/or rollover through simulations. This is mainly due to lack of availability of verified full vehicle flexible-body models. The verification process is costly as it requires instrumentation of a heavy vehicle, scanning of road surfaces, and collection of data by running the vehicle over different road conditions, performing various maneuvering, etc. This paper presents the reverse engineering process of a class-8 truck and validation of a full flexible-body simulation model of a Wabash 53-foot trailer against the strain data recoded from proving ground testing of an instrumented truck. Simulation results show that, with the exception of the noise from the strain gage data from instrumented test run at 30 mph, there is a good agreement in periodicity and relative amplitude with the ADAMS model. A comparison of strain data from the flex-body model and the instrumented truck shows that the modeling and verification approach presented in this paper can be confidently used to validate the full flexible-body models developed for specific analyses.展开更多
In this paper, a walking robot is established. The zero-moment point(ZMP) is used to stabilize the working robot. The kinematic model of the robot based on denavit-hartenberg(D-H) method is presented in this thesi...In this paper, a walking robot is established. The zero-moment point(ZMP) is used to stabilize the working robot. The kinematic model of the robot based on denavit-hartenberg(D-H) method is presented in this thesis. And then the dynamic model, based on Lagrange method, is built by simplifying the kinematic model of robot body. A kinematic simulation to the robotic system is achieved based on Adams. Driving torque of left ankle is calculated according to joint angle, angular velocity and angular acceleration. The validity of the dynamic model is testified by comparing with the result of simulation.展开更多
文摘CHC Trailing suction hopper dredgers (TSHD) have been widely used in dredging industry. In order to simulate the dredging process accurately, a mathematical model for a swell compensator used in TSHD is proposed, and a friendly simulation model based on the Automated Dynamic Analysis of Mechanical Systems (ADAMS) is built to test and validate the mathematical model for the swell compensator. The factors influencing the dynamic behavior of the TSHD suction pipe system, such as the mo-tion of the vessel in an unquiet situation with different water current velocities, seabed profiles, seabed soil hardness and the forces acting on the suction pipe system, have been taken into consideration. The simulation results show that they fit in with the operat-ing practice qualitatively.
基金financially supported by the National Key R&D Program of China(No.2017YFE0112200)Hebei Province Science and Technology Support Program(No.19391825D)Postgraduate Innovation Subsidy Project of Hebei Province(No.CXZZBS2021134)。
文摘An adaptive wheel-legged shape reconfigurable mobile robot,based on a scissor-like mechanism,is proposed for an obstacle detecting and surmounting robot,moving on complex terrain.The robot can dynamically adjust its own shape,according to the environment,realizing a transformation of wheel shape into leg shape and vice versa.Each wheel-legged mechanism has one degree of freedom,which means that only the relative motion of the inner and outer discs is needed to achieve the transformation of the shape into a wheel or a leg.First,the force analysis of the conversion process of the wheel-legged mechanism is carried out,while the relationship between the driving torque and the friction factor in the non-conversion trigger stage and in the conversion trigger stage is obtained.The results showed that the shape conversion can be better realized by increasing the friction factor of the trigger point.Next,the kinematics analysis of the robot,including climbing the obstacles,stairs and gully,is carried out.The motion of the spokes tip is obtained,in order to derive the folding ratio and the surmountable obstacle height of the wheel-legged mechanism.The parameters of the wheel-legged structure are optimized,to obtain better stability and obstacle climbing ability.Finally,a dynamic simulation model is established by ADAMS,to verify the obstacle climbing performance and gait rationality of the robot,in addition to a prototype experiment.The results showed that the surmountable obstacle height of the robot is about3.05 times the spoke radius.The robot has the stability of a traditional wheel mechanism and the obstacle surmount performance of a leg mechanism,making it more suitable for field reconnaissance and exploration missions.
文摘Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating the impact of these factors on crashes and/or rollover through simulations. This is mainly due to lack of availability of verified full vehicle flexible-body models. The verification process is costly as it requires instrumentation of a heavy vehicle, scanning of road surfaces, and collection of data by running the vehicle over different road conditions, performing various maneuvering, etc. This paper presents the reverse engineering process of a class-8 truck and validation of a full flexible-body simulation model of a Wabash 53-foot trailer against the strain data recoded from proving ground testing of an instrumented truck. Simulation results show that, with the exception of the noise from the strain gage data from instrumented test run at 30 mph, there is a good agreement in periodicity and relative amplitude with the ADAMS model. A comparison of strain data from the flex-body model and the instrumented truck shows that the modeling and verification approach presented in this paper can be confidently used to validate the full flexible-body models developed for specific analyses.
基金supported by the Youth Scientific Research and Innovation Plan of Beijing University of Posts and Telecommunications
文摘In this paper, a walking robot is established. The zero-moment point(ZMP) is used to stabilize the working robot. The kinematic model of the robot based on denavit-hartenberg(D-H) method is presented in this thesis. And then the dynamic model, based on Lagrange method, is built by simplifying the kinematic model of robot body. A kinematic simulation to the robotic system is achieved based on Adams. Driving torque of left ankle is calculated according to joint angle, angular velocity and angular acceleration. The validity of the dynamic model is testified by comparing with the result of simulation.