Agrobacterium-mediated plant transformation is widely used in plant genetic engineering.However,its efficiency is limited by plant immunity against Agrobacterium.Chili pepper(Capsicum annuum L.)is an important vegetab...Agrobacterium-mediated plant transformation is widely used in plant genetic engineering.However,its efficiency is limited by plant immunity against Agrobacterium.Chili pepper(Capsicum annuum L.)is an important vegetable that is recalcitrant to Agrobacterium-mediated transformation.In this work,Agrobacterium was found to induce a strong immune response in pepper,which might be the reason for T-DNA being difficult to express in pepper.An Agrobacterium mutant screen was conducted and a point mutation in the hisI gene was identified due to a weak immune response and enhanced transient expression mediated by this Agrobacterium mutant in pepper leaves.Further genetic analysis revealed that histidine biosynthesis deficiency caused by mutations in many genes of this pathway led to reduced pepper cell death,presumably due to reduced bacterial growth.However,mutation analysis of threonine and tryptophan biosynthesis genes showed that the biosynthesis of different amino acids may play different roles in Agrobacterium growth and stimulating the pepper immune response.The possible application of Agrobacterium amino acid biosynthesis mutations in plant biology was discussed.展开更多
Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increa...Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted.展开更多
Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However,the immaturity of its stable transformation system and its low transformation ...Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However,the immaturity of its stable transformation system and its low transformation efficiency limit gene function research on non-heading Chinese cabbage. Agrobacterium rhizogenes-mediated(ARM) transgenic technology is a rapid and effective transformation method that has not yet been established for non-heading Chinese cabbage plants. Here, we optimized conventional ARM approaches(one-step and two-step transformation methods) suitable for living non-heading Chinese cabbage plants in nonsterile environments. Transgenic roots in composite non-heading Chinese cabbage plants were identified using phenotypic detection, fluorescence observation, and PCR analysis. The transformation efficiency of a two-step method on four five-day-old non-heading Chinese cabbage seedlings(Suzhouqing, Huangmeigui, Wuyueman, and Sijiu Caixin) was 43.33%-51.09%, whereas using the stout hypocotyl resulted in a transformation efficiency of 54.88% for the 30-day-old Sijiu Caixin.The one-step method outperformed the two-step method;the transformation efficiency of different varieties was above 60%, and both methods can be used to obtain transgenic roots for functional studies within one month. Finally, optimized ARM transformation methods can easily,quickly, and effectively produce composite non-heading Chinese cabbage plants with transgenic roots, providing a reliable foundation for gene function research and non-heading Chinese cabbage genetic improvement breeding.展开更多
Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Ag...Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Agrobacterium-mediated transformation with help of bombardment. The transformation efficiency can be raised greatly. Single copy of gene insertion in the genome of transgenic rice plants was proved by Southern analysis and the expression of GUS gene was observed. GUS gene and hygromycin-resistant gene show 3:1 segregation in progenies of the transgenic rice plants.展开更多
Expression of rol genes from Ri plasmid of Agrobacterium rhizogenes not only leads to the excessive formation of adventitious roots, but also exhibits various genetically modified characteristics that have bro...Expression of rol genes from Ri plasmid of Agrobacterium rhizogenes not only leads to the excessive formation of adventitious roots, but also exhibits various genetically modified characteristics that have broad prospects for the application of plant genetic improvement. Since the 1980s of the last century, much progress has been made in the studies of A. rhizogenes, in particular the agropine type Ri plasmid rol genes and their applications for plant genetic improvement, which involves the structure and function of Ri plasmid, the characters of rol genes, the influence of rol genes expression on plants growth and development, and the applications of rol genes for genetic improvement of forest tree. In this paper, the advances in this field are reviewed and the existing problems about the application of rol genes for genetic improvement of forest tree are also discussed.展开更多
Despite the importance of aloe in cosmetic and pharmaceutical industries, improvement of aloe (Aloe barbadensis Miller) by genetic engineering was seldom reported previously. In this study, regeneration and transfor...Despite the importance of aloe in cosmetic and pharmaceutical industries, improvement of aloe (Aloe barbadensis Miller) by genetic engineering was seldom reported previously. In this study, regeneration and transformation conditions, including explant selection and surface sterilization, use of different Agrobacterium strains, and co-culture processing, are optimized. The use of 20.0% sodium hypochloride (25 rain) for sterilization was less detrimental to the health of explant than 0.1% mercuric chloride (10 min). Regeneration frequency from stems was much higher than that from leaves or sheaths. Explants were infected by Agrobacterium (30 rain) in liquid co-cultural medium, and this was followed by three days co-culture on sterile filter papers with light for 10 h per day at 24℃. Histochemical data demonstrated that the transient expression of GUS gene in the stem explants of aloe infected with Agrobacterium strains EHAI05 and C58CI was 80.0% and 30.0%, respectively, suggesting the higher sensitivity of the explants to EHAI05 than to C58C1. Infected tissues were selected using G418 (10.0-25.0 mg/L) to generate transformants. Sixty-seven G418 resistant plantlets were generated from the infected explants. Southern blotting, PCR, and ELISA analyses indicated that the alien gene were successfully transferred into aloe and was expressed in the transgenic plants. This newly established transformation system could be used for the genetic improvement of aloe.展开更多
[Objective]The aim was to optimize genetic transformation system in tobacco K326 mediated by Agrobacterium.[Method]The leaf of tobacco aseptic seedling was taken as explants to study the optimization of Agrobacterium-...[Objective]The aim was to optimize genetic transformation system in tobacco K326 mediated by Agrobacterium.[Method]The leaf of tobacco aseptic seedling was taken as explants to study the optimization of Agrobacterium-mediated genetic transformation system.[Result] The highest transformation efficiency was obtained when the explants were pre-cultured in the medium of MS + 2 mg/L 6-BA + 0.2 mg/L IAA for 2 d,and then infected with Agrobacterium GV3101(OD600 =0.6) for 5 min.The PCR detection proved that npt II gene had been integrated into the regenerated tobacco plants.[Conclusion]A highly efficient genetic transformation system of tobacco leaf mediated by Agrobacterium was established.展开更多
[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF wa...[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF was introduced into the rapeseed ( Brassica campestris L. ) by Agrobacterium tumefaciens-mediated transformation; meanwhile regeneration conditions of rapeseed were also optimized, and the regenerated resistant plantlets were detected by PCR and Southern blot. [ Result] This fusion gene had been integrated into rapeseed genome successfully, and the optimized conditions of transformation and regeneration were as follows: explants pre-culture for 2 d, co-culture for 3 d, bacteria solution OD600 for 0.3 and infection time for 5 min. [ Conclusion] The results laid a solid foundation for extraction, isolation and purification of protein in transgenic plant seeds.展开更多
[Objective] The aim of this study was to carry out study on the optimization of Agrobacterium mediated genetic transformation system of tomato Meifen No.1.[Method] The cotyledon of tomato cultivar Meifen No.1 was used...[Objective] The aim of this study was to carry out study on the optimization of Agrobacterium mediated genetic transformation system of tomato Meifen No.1.[Method] The cotyledon of tomato cultivar Meifen No.1 was used as the explant,and the Agrobacterium mediation method was used to optimize its genetic transformation efficiency so as to establish the efficient Agrobacterium mediated genetic transformation system of tomato cotyledon.[Result] The highest transformation efficiency was obtained when the explants were cultivated for 2 d on MS + 2.0 mg/L 6-BA+ 0.5 mg/L IAA medium and then infected with Agrobacterium EHA105(OD = 0.4)for 5 min;it was proved by PCR analysis that the target nptII gene had been integrated into the genome of regenerated plants.[Conclusion] The result in this study had provided basis for the transfer of valuable genes into tomato Meifen No.1.展开更多
Ten-maize inbred lines of maize (Zea mays L.) with high-induction rate and proliferation ability of embryonic calli were selected from 70-maize inbred lines by immature embryo culturing. Some of the embryonic calli ...Ten-maize inbred lines of maize (Zea mays L.) with high-induction rate and proliferation ability of embryonic calli were selected from 70-maize inbred lines by immature embryo culturing. Some of the embryonic calli were transferred onto regeneration medium to examine the ability of regeneration, some were transformed via Agrobacterium tumifaciens C58 carrying intron-β-glucuronidase (gus) gene, and GV3301 carrying the green fluorescent protein (gfp) gene to study the susceptibility of different genotypes in maize to A. tumifaciens. All embryonic calli initiated from 10-maize inbred lines were able to regenerate into plantlets, and the regeneration frequencies of inbred lines 6010, 6038, 6015, 6051, and 6060 were 61.11%, 31.94%, 45%, 33.33%, and 56.94%, respectively, which were higher than that of other lines. Analysis of variance indicated that the susceptibility of the various genotypes in maize to A. tumifacien C58 showed a significant difference among each other, and the inbred lines 6010, 6015, 6051, 6050, 6058, 6060, 6069, 6077 were susceptible to A. tumifacien C58, of which frequency of gus expression were over 70%. Expression of GFP was observed in six-inbred lines (6050, 6015, 6051, 6058, 6069, 6077). The inbred lines 6051, 6010, 6015, 6060, and 6050 had the high regeneration and the susceptibility to A. tumifaciens C58; and the inbred lines 6051, 6015, and 6060 had the high regeneration and the susceptibility to Agrobacterium tumifaciens GV3301.展开更多
Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues of...Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues often become severely necrotic after co-cultivation with Agrobacterium, which is one of the major obstacles in gene delivery. In this study, wheat varieties CB037, Kenong 199, Xinchun 9, Lunxuan 987, and Shi 4185 showed desirable culture potential or high infection ability in Agrobacterium-mediated transformation. Similarly, optimal regeneration conditions were determined by testing their ability to inhibit the cell necrosis and cell death phenotype. Two auxins of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-o-anisic acid (dicamba) were evaluated for highly significant effect on both callus and plantlet production, although they were genotype-dependent in wheat. Substitution of 2,4-D by dicamba enhanced the growth and regeneration ability of callus from the immature embryos of most genotypes tested. The callus growth state couldn’t be modified by adding antioxidants such as ascorbic acid, cysteine, and silver nitrate or organic additives such as thiamine HCl and asparagine to the media. On the contrary, the best tissue statement and plant regeneration was achieved by employing the media containing the simplest MS (Murashige and Skoog) components and dicamba without organic components and vitamins. Thereby, our results are thought to inhibit wheat cell necrosis effectively and suggested to be used for more wheat genotypes.展开更多
The regeneration ability of four alfalfa (Medicago sativa L.) cultivars, Xinjiang Daye, Longdong, Gannong 1 and Gannong 3, was studied, and the effects of various cultivars, explant sources and medium recipes on reg...The regeneration ability of four alfalfa (Medicago sativa L.) cultivars, Xinjiang Daye, Longdong, Gannong 1 and Gannong 3, was studied, and the effects of various cultivars, explant sources and medium recipes on regeneration were compared. The better callus forming frequency obtained from hypocotyls of Xinjiang Daye is 88.5% and regeneration frequency is 9.8% in our initial experiments. To further optimize regeneration system for genetic transformation, we therefore changed concentrations of plant growth regulators and supplemented with glutamine into callus-induction and shoot-regeneration media. Callus forming frequency and shoot differentiation frequency were increased to 100%. The time taken to generate transgenic plants (16 weeks) was shorter than that for previouse procedure (25 weeks) and regeneration frequency was promoted to 15.1%. The results show that addition of glutamine is particularly important for shortening period of regeneration and promoting regeneration frequency. For study of genetic transformation of alfalfa, Agrobacterium tumefaciens-mediated transformation of Xinjiang Daye was developed based on this optimized regeneration system. The plant expression vector carrying two glutamine synthetases (GS 1 and GS2) and △1-pyrroline-5-carboxylate synthetase (P5CS) gene was used for alfalfa in vitro transformation. Six transgenic alfalfa plantlets with resistance to PPT were obtained. The introduction of foreign genes into plants was assessed in the transformants by PCR analysis and Southern hybridizations.展开更多
A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this ar...A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.展开更多
Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticid...Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.展开更多
Several important factors affecting the efficiency of Agrobacterium-mediated rice transformation were studied with several predominant commercial indica and japonica rice cultivars. As far as indica rice callus was co...Several important factors affecting the efficiency of Agrobacterium-mediated rice transformation were studied with several predominant commercial indica and japonica rice cultivars. As far as indica rice callus was concerned, CC medium was the best and the quality of callus was improved with the addition of 1.0 to 2.0 mg/L ABA. It decreased the percentage of browning calli and improved the callus growing state by addition of a certain amount of sorbitol to the subculture medium. NB medium was the best for callus initiation of japonica rice, but the improvement in the quality of callus of japonica subspecies was not obvious by adding ABA. During the period of subculture, to a certain degree, increasing the sucrose concentration could improve the proportion of hygromycin resistant calli. Furthermore, the transformation efficiency would be higher by applying selection pressure in the selection stage, removing selection pressure during the plantlet differentiation period and applying selection pressure again during seedling hardening period. Besides, suitable combination of plant hormones was beneficial for callus differentiation. An efficient /Agrobacterium-mediated rice transformation system had been established for several rice cultivars and a lot of transgenic rice plants had been obtained.展开更多
Soybean is one of the world's most important oil and protein crops. Efficient transformation is a key factor for the improvement of soybean by genetic modification. We describe an optimized protocol for the Agroba...Soybean is one of the world's most important oil and protein crops. Efficient transformation is a key factor for the improvement of soybean by genetic modification. We describe an optimized protocol for the Agrobacterium rhizogenes-mediated transformation of soybean and the induction of hairy root development in vitro. Cotyledons with 0.5-cm hypocotyls were cut from 5-day-old seedlings and used as explants. After infection and co-cultivation,hairy roots were produced in induction culture medium after 10–12 days. Using this method, 90%–99% of the infected explants of five different cultivars produced hairy roots within one month. Observations using reporter constructs showed that 30%–60% of the hairy roots induced were transformed. Based on high transformation efficiency and short transformation period, this method represents an efficient and rapid platform for study of soybean gene function.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000800)National Natural Science Foundation of China(Grant No.32172600)。
文摘Agrobacterium-mediated plant transformation is widely used in plant genetic engineering.However,its efficiency is limited by plant immunity against Agrobacterium.Chili pepper(Capsicum annuum L.)is an important vegetable that is recalcitrant to Agrobacterium-mediated transformation.In this work,Agrobacterium was found to induce a strong immune response in pepper,which might be the reason for T-DNA being difficult to express in pepper.An Agrobacterium mutant screen was conducted and a point mutation in the hisI gene was identified due to a weak immune response and enhanced transient expression mediated by this Agrobacterium mutant in pepper leaves.Further genetic analysis revealed that histidine biosynthesis deficiency caused by mutations in many genes of this pathway led to reduced pepper cell death,presumably due to reduced bacterial growth.However,mutation analysis of threonine and tryptophan biosynthesis genes showed that the biosynthesis of different amino acids may play different roles in Agrobacterium growth and stimulating the pepper immune response.The possible application of Agrobacterium amino acid biosynthesis mutations in plant biology was discussed.
基金financial assistance provided by the High-End Foreign Expert Recruitment Program(G2022051003L)National Natural Science Foundation of China(32201878)+3 种基金Hainan Yazhou Bay Seed Lab(B21HJ0215)Agricultural Science and Technology Innovation Program of CAAS(CAASZDRW202002,CAAS-ZDRW202201)Hebei Natural Science Foundation(C2021205013)Long Mao is also a“Yellow River Delta Scholar”in Sino-Agro Experimental Station for Salt Tolerant Crops(SAESSTC),Dongying,Shandong,China.
文摘Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted.
基金funded by National Natural Science Foundation of China (Grant No.32072575)Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_0588)National Vegetable Industry Technology System (Grant No.CARS-23-A16)。
文摘Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However,the immaturity of its stable transformation system and its low transformation efficiency limit gene function research on non-heading Chinese cabbage. Agrobacterium rhizogenes-mediated(ARM) transgenic technology is a rapid and effective transformation method that has not yet been established for non-heading Chinese cabbage plants. Here, we optimized conventional ARM approaches(one-step and two-step transformation methods) suitable for living non-heading Chinese cabbage plants in nonsterile environments. Transgenic roots in composite non-heading Chinese cabbage plants were identified using phenotypic detection, fluorescence observation, and PCR analysis. The transformation efficiency of a two-step method on four five-day-old non-heading Chinese cabbage seedlings(Suzhouqing, Huangmeigui, Wuyueman, and Sijiu Caixin) was 43.33%-51.09%, whereas using the stout hypocotyl resulted in a transformation efficiency of 54.88% for the 30-day-old Sijiu Caixin.The one-step method outperformed the two-step method;the transformation efficiency of different varieties was above 60%, and both methods can be used to obtain transgenic roots for functional studies within one month. Finally, optimized ARM transformation methods can easily,quickly, and effectively produce composite non-heading Chinese cabbage plants with transgenic roots, providing a reliable foundation for gene function research and non-heading Chinese cabbage genetic improvement breeding.
文摘Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Agrobacterium-mediated transformation with help of bombardment. The transformation efficiency can be raised greatly. Single copy of gene insertion in the genome of transgenic rice plants was proved by Southern analysis and the expression of GUS gene was observed. GUS gene and hygromycin-resistant gene show 3:1 segregation in progenies of the transgenic rice plants.
文摘Expression of rol genes from Ri plasmid of Agrobacterium rhizogenes not only leads to the excessive formation of adventitious roots, but also exhibits various genetically modified characteristics that have broad prospects for the application of plant genetic improvement. Since the 1980s of the last century, much progress has been made in the studies of A. rhizogenes, in particular the agropine type Ri plasmid rol genes and their applications for plant genetic improvement, which involves the structure and function of Ri plasmid, the characters of rol genes, the influence of rol genes expression on plants growth and development, and the applications of rol genes for genetic improvement of forest tree. In this paper, the advances in this field are reviewed and the existing problems about the application of rol genes for genetic improvement of forest tree are also discussed.
基金the grant from Beijing Education Committee (No. KZ200410011006).
文摘Despite the importance of aloe in cosmetic and pharmaceutical industries, improvement of aloe (Aloe barbadensis Miller) by genetic engineering was seldom reported previously. In this study, regeneration and transformation conditions, including explant selection and surface sterilization, use of different Agrobacterium strains, and co-culture processing, are optimized. The use of 20.0% sodium hypochloride (25 rain) for sterilization was less detrimental to the health of explant than 0.1% mercuric chloride (10 min). Regeneration frequency from stems was much higher than that from leaves or sheaths. Explants were infected by Agrobacterium (30 rain) in liquid co-cultural medium, and this was followed by three days co-culture on sterile filter papers with light for 10 h per day at 24℃. Histochemical data demonstrated that the transient expression of GUS gene in the stem explants of aloe infected with Agrobacterium strains EHAI05 and C58CI was 80.0% and 30.0%, respectively, suggesting the higher sensitivity of the explants to EHAI05 than to C58C1. Infected tissues were selected using G418 (10.0-25.0 mg/L) to generate transformants. Sixty-seven G418 resistant plantlets were generated from the infected explants. Southern blotting, PCR, and ELISA analyses indicated that the alien gene were successfully transferred into aloe and was expressed in the transgenic plants. This newly established transformation system could be used for the genetic improvement of aloe.
文摘[Objective]The aim was to optimize genetic transformation system in tobacco K326 mediated by Agrobacterium.[Method]The leaf of tobacco aseptic seedling was taken as explants to study the optimization of Agrobacterium-mediated genetic transformation system.[Result] The highest transformation efficiency was obtained when the explants were pre-cultured in the medium of MS + 2 mg/L 6-BA + 0.2 mg/L IAA for 2 d,and then infected with Agrobacterium GV3101(OD600 =0.6) for 5 min.The PCR detection proved that npt II gene had been integrated into the regenerated tobacco plants.[Conclusion]A highly efficient genetic transformation system of tobacco leaf mediated by Agrobacterium was established.
基金Supported by Bioreactor Important Special Item of 863-Program inthe "Eleventh Five-Year" Plan (No. 2007AA100503)Science and Technology Development Key Plan of Jilin Province( No.20070922)+1 种基金Cultivation Fund of Scientific and Technical Innovation Project Major Program of Higher Education Institutions ( No.70S018)Science and Technology Plan of Changchun City (No.06GG150)~~
文摘[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF was introduced into the rapeseed ( Brassica campestris L. ) by Agrobacterium tumefaciens-mediated transformation; meanwhile regeneration conditions of rapeseed were also optimized, and the regenerated resistant plantlets were detected by PCR and Southern blot. [ Result] This fusion gene had been integrated into rapeseed genome successfully, and the optimized conditions of transformation and regeneration were as follows: explants pre-culture for 2 d, co-culture for 3 d, bacteria solution OD600 for 0.3 and infection time for 5 min. [ Conclusion] The results laid a solid foundation for extraction, isolation and purification of protein in transgenic plant seeds.
基金Supported by Open Subjects in State Key Laboratory of Plant Physiology and Biochemistry(SKLPPBKF09011)~~
文摘[Objective] The aim of this study was to carry out study on the optimization of Agrobacterium mediated genetic transformation system of tomato Meifen No.1.[Method] The cotyledon of tomato cultivar Meifen No.1 was used as the explant,and the Agrobacterium mediation method was used to optimize its genetic transformation efficiency so as to establish the efficient Agrobacterium mediated genetic transformation system of tomato cotyledon.[Result] The highest transformation efficiency was obtained when the explants were cultivated for 2 d on MS + 2.0 mg/L 6-BA+ 0.5 mg/L IAA medium and then infected with Agrobacterium EHA105(OD = 0.4)for 5 min;it was proved by PCR analysis that the target nptII gene had been integrated into the genome of regenerated plants.[Conclusion] The result in this study had provided basis for the transfer of valuable genes into tomato Meifen No.1.
基金This work was supported by the National Natural Sciences Foundation of China (No. 30370889)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0453)+3 种基金Beijing Agricultural Innovative Platform-Beijing Natural Science Fund Programthe National High-tech R&D Program of China (No. 2006 AA100103)the National Key Technolo-gies R&D Program (No. 2006 BAD01A03)the Program of the National Ministry of Agriculture (No. 2003-Q03)
文摘Ten-maize inbred lines of maize (Zea mays L.) with high-induction rate and proliferation ability of embryonic calli were selected from 70-maize inbred lines by immature embryo culturing. Some of the embryonic calli were transferred onto regeneration medium to examine the ability of regeneration, some were transformed via Agrobacterium tumifaciens C58 carrying intron-β-glucuronidase (gus) gene, and GV3301 carrying the green fluorescent protein (gfp) gene to study the susceptibility of different genotypes in maize to A. tumifaciens. All embryonic calli initiated from 10-maize inbred lines were able to regenerate into plantlets, and the regeneration frequencies of inbred lines 6010, 6038, 6015, 6051, and 6060 were 61.11%, 31.94%, 45%, 33.33%, and 56.94%, respectively, which were higher than that of other lines. Analysis of variance indicated that the susceptibility of the various genotypes in maize to A. tumifacien C58 showed a significant difference among each other, and the inbred lines 6010, 6015, 6051, 6050, 6058, 6060, 6069, 6077 were susceptible to A. tumifacien C58, of which frequency of gus expression were over 70%. Expression of GFP was observed in six-inbred lines (6050, 6015, 6051, 6058, 6069, 6077). The inbred lines 6051, 6010, 6015, 6060, and 6050 had the high regeneration and the susceptibility to A. tumifaciens C58; and the inbred lines 6051, 6015, and 6060 had the high regeneration and the susceptibility to Agrobacterium tumifaciens GV3301.
基金supported by the National Natural Science Foundation of China (30971776)the National Transgenic Specialized Research Program of China (2008ZX08010-004)
文摘Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues often become severely necrotic after co-cultivation with Agrobacterium, which is one of the major obstacles in gene delivery. In this study, wheat varieties CB037, Kenong 199, Xinchun 9, Lunxuan 987, and Shi 4185 showed desirable culture potential or high infection ability in Agrobacterium-mediated transformation. Similarly, optimal regeneration conditions were determined by testing their ability to inhibit the cell necrosis and cell death phenotype. Two auxins of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-o-anisic acid (dicamba) were evaluated for highly significant effect on both callus and plantlet production, although they were genotype-dependent in wheat. Substitution of 2,4-D by dicamba enhanced the growth and regeneration ability of callus from the immature embryos of most genotypes tested. The callus growth state couldn’t be modified by adding antioxidants such as ascorbic acid, cysteine, and silver nitrate or organic additives such as thiamine HCl and asparagine to the media. On the contrary, the best tissue statement and plant regeneration was achieved by employing the media containing the simplest MS (Murashige and Skoog) components and dicamba without organic components and vitamins. Thereby, our results are thought to inhibit wheat cell necrosis effectively and suggested to be used for more wheat genotypes.
基金supported by the National Special Program for Research and Industrialization of Transgenic Plants,China(J2002-B-008)
文摘The regeneration ability of four alfalfa (Medicago sativa L.) cultivars, Xinjiang Daye, Longdong, Gannong 1 and Gannong 3, was studied, and the effects of various cultivars, explant sources and medium recipes on regeneration were compared. The better callus forming frequency obtained from hypocotyls of Xinjiang Daye is 88.5% and regeneration frequency is 9.8% in our initial experiments. To further optimize regeneration system for genetic transformation, we therefore changed concentrations of plant growth regulators and supplemented with glutamine into callus-induction and shoot-regeneration media. Callus forming frequency and shoot differentiation frequency were increased to 100%. The time taken to generate transgenic plants (16 weeks) was shorter than that for previouse procedure (25 weeks) and regeneration frequency was promoted to 15.1%. The results show that addition of glutamine is particularly important for shortening period of regeneration and promoting regeneration frequency. For study of genetic transformation of alfalfa, Agrobacterium tumefaciens-mediated transformation of Xinjiang Daye was developed based on this optimized regeneration system. The plant expression vector carrying two glutamine synthetases (GS 1 and GS2) and △1-pyrroline-5-carboxylate synthetase (P5CS) gene was used for alfalfa in vitro transformation. Six transgenic alfalfa plantlets with resistance to PPT were obtained. The introduction of foreign genes into plants was assessed in the transformants by PCR analysis and Southern hybridizations.
文摘A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.
文摘Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.
文摘Several important factors affecting the efficiency of Agrobacterium-mediated rice transformation were studied with several predominant commercial indica and japonica rice cultivars. As far as indica rice callus was concerned, CC medium was the best and the quality of callus was improved with the addition of 1.0 to 2.0 mg/L ABA. It decreased the percentage of browning calli and improved the callus growing state by addition of a certain amount of sorbitol to the subculture medium. NB medium was the best for callus initiation of japonica rice, but the improvement in the quality of callus of japonica subspecies was not obvious by adding ABA. During the period of subculture, to a certain degree, increasing the sucrose concentration could improve the proportion of hygromycin resistant calli. Furthermore, the transformation efficiency would be higher by applying selection pressure in the selection stage, removing selection pressure during the plantlet differentiation period and applying selection pressure again during seedling hardening period. Besides, suitable combination of plant hormones was beneficial for callus differentiation. An efficient /Agrobacterium-mediated rice transformation system had been established for several rice cultivars and a lot of transgenic rice plants had been obtained.
基金supported by the Major Science and Technology Projects of China (2016ZX08010-004)the Ministry of Science and Technology of China (2016YFD0100504)the CAAS (Chinese Academy of Agriculture Sciences) Innovation Project
文摘Soybean is one of the world's most important oil and protein crops. Efficient transformation is a key factor for the improvement of soybean by genetic modification. We describe an optimized protocol for the Agrobacterium rhizogenes-mediated transformation of soybean and the induction of hairy root development in vitro. Cotyledons with 0.5-cm hypocotyls were cut from 5-day-old seedlings and used as explants. After infection and co-cultivation,hairy roots were produced in induction culture medium after 10–12 days. Using this method, 90%–99% of the infected explants of five different cultivars produced hairy roots within one month. Observations using reporter constructs showed that 30%–60% of the hairy roots induced were transformed. Based on high transformation efficiency and short transformation period, this method represents an efficient and rapid platform for study of soybean gene function.