在利用多高频电流传感器进行电缆局部放电在线检测与定位时,针对局放信号初至时刻拾取精度不高影响定位精度的问题,提出一种基于AIC(Akaike’s Information Criterion)准则和时窗能量比的局放故障在线检测与精确定位方法。首先利用时窗...在利用多高频电流传感器进行电缆局部放电在线检测与定位时,针对局放信号初至时刻拾取精度不高影响定位精度的问题,提出一种基于AIC(Akaike’s Information Criterion)准则和时窗能量比的局放故障在线检测与精确定位方法。首先利用时窗能量比检测出局部放电发生的时窗,然后求取确定时窗的局部AIC特征曲线,并基于AIC准则精确拾取局放信号初至时刻。最后,运用到达时间法对局放源进行定位。仿真结果表明,该方法定位精度高,抗噪声干扰能力强,在-2 d B的噪声环境下可实现99.85%的定位准确率,具备工程实用价值。展开更多
函数型主成分分析(Functional Principal Component Analysis,FPCA)是对函数型数据进行降维的常用技术,本文将考虑函数型数据的主成分联合选择问题。首先,本文给出了两函数型变量的主成分联合模型,并通过基函数展开法和极大惩罚似然法...函数型主成分分析(Functional Principal Component Analysis,FPCA)是对函数型数据进行降维的常用技术,本文将考虑函数型数据的主成分联合选择问题。首先,本文给出了两函数型变量的主成分联合模型,并通过基函数展开法和极大惩罚似然法对样本数据进行曲线平滑。在联合模型基础上,本文给出了确定函数型主成分个数的AIC准则,并提出了改进的ECME算法对模型参数进行估计。模拟显示AIC准则对应的主成分个数选择结果准确率更高,考虑两函数型数据之间相关信息的联合选择效果会比对各函数型数据主成分进行独立选择的结果有所提升。最后,本文将所提方法应用于老年人中医宗气数据的分析.展开更多
文摘在利用多高频电流传感器进行电缆局部放电在线检测与定位时,针对局放信号初至时刻拾取精度不高影响定位精度的问题,提出一种基于AIC(Akaike’s Information Criterion)准则和时窗能量比的局放故障在线检测与精确定位方法。首先利用时窗能量比检测出局部放电发生的时窗,然后求取确定时窗的局部AIC特征曲线,并基于AIC准则精确拾取局放信号初至时刻。最后,运用到达时间法对局放源进行定位。仿真结果表明,该方法定位精度高,抗噪声干扰能力强,在-2 d B的噪声环境下可实现99.85%的定位准确率,具备工程实用价值。
文摘函数型主成分分析(Functional Principal Component Analysis,FPCA)是对函数型数据进行降维的常用技术,本文将考虑函数型数据的主成分联合选择问题。首先,本文给出了两函数型变量的主成分联合模型,并通过基函数展开法和极大惩罚似然法对样本数据进行曲线平滑。在联合模型基础上,本文给出了确定函数型主成分个数的AIC准则,并提出了改进的ECME算法对模型参数进行估计。模拟显示AIC准则对应的主成分个数选择结果准确率更高,考虑两函数型数据之间相关信息的联合选择效果会比对各函数型数据主成分进行独立选择的结果有所提升。最后,本文将所提方法应用于老年人中医宗气数据的分析.