采用原位反应近液相线铸造方法制备Al2O3P/Al-Cu复合材料,对其进行二次加热,研究晶粒的形貌演变和长大规律。用光学显微镜观察组织结构,应用Image Pro Plus软件测量并统计出平均晶粒尺寸及合金液相体积分数,并与理论计算数值进行比较。...采用原位反应近液相线铸造方法制备Al2O3P/Al-Cu复合材料,对其进行二次加热,研究晶粒的形貌演变和长大规律。用光学显微镜观察组织结构,应用Image Pro Plus软件测量并统计出平均晶粒尺寸及合金液相体积分数,并与理论计算数值进行比较。结果表明,在590℃保温10~60 min后,不含Al2O3颗粒的Al-6.8%Cu基体合金平均晶粒尺寸为89~132μm,液相体积分数为14%~26.8%,而3.6 wt%Al2O3P/Al-6.8%Cu复合材料的平均晶粒尺寸为73-107μm,液相体积分数为11.6%~20.9%。说明Al2O3颗粒在合金的二次加热过程中对晶粒长大行为及液相体积分数的增长均有明显的抑制作用,从而为优化半固态组织提供了一种新思路。展开更多
The deformation behaviors of as-sintered CNT/Al-Cu composites were investigated by isothermal compression tests performed in the temperature range of 300-550°C and strain rate range of 0.001-10 s-1 with Gleeble 3...The deformation behaviors of as-sintered CNT/Al-Cu composites were investigated by isothermal compression tests performed in the temperature range of 300-550°C and strain rate range of 0.001-10 s-1 with Gleeble 3500 thermal simulator system.Processing maps based on dynamic material model(DMM)were established at strains of 0.1-0.6,and microstructures before and after hot deformation were characterized by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD)and high-resolution transmission electron microscopy(HRTEM).The results show that the strain has a significant influence on the processing maps,and the optimum processing domains are at temperatures of 375-425°C with strain rates of 0.4-10 s-1 and at 525-550°C with 0.02-10 s-1 when the strain is 0.6.An inhomogeneous distribution of large particles,as well as a high density of tangled dislocations,dislocation walls,and some sub-grains appears at low deformation temperatures and strain rates,which correspond to the instability domain.A homogeneous distribution of fine particles and dynamic recrystallization generates when the composites are deformed at 400 and 550°C under a strain rate of 10 s-1,which correspond to the stability domains.展开更多
The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was ...The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was fabricated by compound squeeze casting process. Then, heat transfer, solidification and distribution of the generated stresses along the interface region of the bimetal were analyzed using Thermo-Calc, ProCAST and ANSYS softwares, and structure, copper distribution and microhardness changes across the interface of the bimetal were studied. The results showed no noticeable change in the structure of the Al-4.5wt.%Cu insert and no obvious micromixing and diffusion of copper across the interface. Simulation results were in good agreement with the experimental ones only when an equivalent oxide layer at the interface was defined and its effect on heat transfer was considered. This layer caused up to 50% decrease in local liquid fraction formed on the surface of the insert. Simulation of the generated stresses showed a uniformly distributed stress along the interface which was significantly lower than the compressive strength of the oxide layer, resulting in its good stability during the fabrication process. It was postulated that this continuous oxide layer not only acted as a thermal barrier but prevented the direct metal-metal contact along the interface as well.展开更多
The carbon nanotubes(CNTs) reinforced Al-Cu matrix composites were prepared by hot pressing sintering and hot rolling, and the effects of Cu content on the interfacial reaction between Al and CNTs, the precipitation b...The carbon nanotubes(CNTs) reinforced Al-Cu matrix composites were prepared by hot pressing sintering and hot rolling, and the effects of Cu content on the interfacial reaction between Al and CNTs, the precipitation behavior of Cu-containing precipitates, and the resultant mechanical properties of the composites were systematically investigated. The results showed that the increase of Cu content can not only increase the number and size of Cu-containing precipitate generated during the composite fabrication processes, but also promote the interfacial reaction between CNTs and Al matrix, leading to the intensified conversion of CNTs into Al_(4)C_(3). As a result, the composite containing 1 wt.% Cu possesses the highest strength, elastic modulus and hardness among all composites, due to the maintenance of the original structure of CNTs. Moreover, the increase of Cu content can change the dominant strengthening mechanisms for the enhanced strength of the fabricated composites.展开更多
The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted...The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.展开更多
The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting s...The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.展开更多
The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures ...The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures for several Al/Cu 2-ply sheets fabricated under different reduction ratios between 30% and 65% were verified by transmission electron microscopy(TEM). Taking the difference of interface microstructure into consideration, 3-point bending and peel tests were performed for obtaining flexural and bonding strengths for Al/Cu 2-ply sheets. The effect of the quantified areas of metallurgical bonding at interfaces on the bonding strength was also discussed. The results show that both the bonding and flexural strengths for Al/Cu 2-ply sheets are reduced by decreasing the reduction ratio during the roll bonding process, which is strongly correlated with the interface microstructure. This was especially verified by observing the interface delamination from the 3-point bent samples.展开更多
基金Project(52265043)supported by the National Natural Science Foundation of ChinaProject(2021A1515010470)supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Project(ZK2023(014))supported by the Guizhou Provincial Science and Technology Projects,ChinaProject(YQK[2023]011)supported by the Outstanding Youth Science and Technology Talent Project of Guizhou Province,China。
文摘采用原位反应近液相线铸造方法制备Al2O3P/Al-Cu复合材料,对其进行二次加热,研究晶粒的形貌演变和长大规律。用光学显微镜观察组织结构,应用Image Pro Plus软件测量并统计出平均晶粒尺寸及合金液相体积分数,并与理论计算数值进行比较。结果表明,在590℃保温10~60 min后,不含Al2O3颗粒的Al-6.8%Cu基体合金平均晶粒尺寸为89~132μm,液相体积分数为14%~26.8%,而3.6 wt%Al2O3P/Al-6.8%Cu复合材料的平均晶粒尺寸为73-107μm,液相体积分数为11.6%~20.9%。说明Al2O3颗粒在合金的二次加热过程中对晶粒长大行为及液相体积分数的增长均有明显的抑制作用,从而为优化半固态组织提供了一种新思路。
基金Project(KJ1601321)supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission,ChinaProject(cstc2017jcyjAX0378)supported by the Chongqing Research Program of Basic Research and Frontier Technology,China
文摘The deformation behaviors of as-sintered CNT/Al-Cu composites were investigated by isothermal compression tests performed in the temperature range of 300-550°C and strain rate range of 0.001-10 s-1 with Gleeble 3500 thermal simulator system.Processing maps based on dynamic material model(DMM)were established at strains of 0.1-0.6,and microstructures before and after hot deformation were characterized by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD)and high-resolution transmission electron microscopy(HRTEM).The results show that the strain has a significant influence on the processing maps,and the optimum processing domains are at temperatures of 375-425°C with strain rates of 0.4-10 s-1 and at 525-550°C with 0.02-10 s-1 when the strain is 0.6.An inhomogeneous distribution of large particles,as well as a high density of tangled dislocations,dislocation walls,and some sub-grains appears at low deformation temperatures and strain rates,which correspond to the instability domain.A homogeneous distribution of fine particles and dynamic recrystallization generates when the composites are deformed at 400 and 550°C under a strain rate of 10 s-1,which correspond to the stability domains.
基金financial support from Iran National Science Foundation (INSF) under grant number 95822903
文摘The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was fabricated by compound squeeze casting process. Then, heat transfer, solidification and distribution of the generated stresses along the interface region of the bimetal were analyzed using Thermo-Calc, ProCAST and ANSYS softwares, and structure, copper distribution and microhardness changes across the interface of the bimetal were studied. The results showed no noticeable change in the structure of the Al-4.5wt.%Cu insert and no obvious micromixing and diffusion of copper across the interface. Simulation results were in good agreement with the experimental ones only when an equivalent oxide layer at the interface was defined and its effect on heat transfer was considered. This layer caused up to 50% decrease in local liquid fraction formed on the surface of the insert. Simulation of the generated stresses showed a uniformly distributed stress along the interface which was significantly lower than the compressive strength of the oxide layer, resulting in its good stability during the fabrication process. It was postulated that this continuous oxide layer not only acted as a thermal barrier but prevented the direct metal-metal contact along the interface as well.
基金The financial supports from the National Natural Science Foundation of China (Nos. 52004101 and 52071269)the Chinese Postdoctoral Science Foundation (No. 2020T130246)+2 种基金the Fund of the State Key Laboratory of Solidification Processing in NWPU, China (No. SKLSP202121)the Guangdong Basic and Applied Basic Research Foundation, China (No. 2020A1515110621)the Fundamental Research Funds for the Central Universities, China (No. 11620345)。
文摘The carbon nanotubes(CNTs) reinforced Al-Cu matrix composites were prepared by hot pressing sintering and hot rolling, and the effects of Cu content on the interfacial reaction between Al and CNTs, the precipitation behavior of Cu-containing precipitates, and the resultant mechanical properties of the composites were systematically investigated. The results showed that the increase of Cu content can not only increase the number and size of Cu-containing precipitate generated during the composite fabrication processes, but also promote the interfacial reaction between CNTs and Al matrix, leading to the intensified conversion of CNTs into Al_(4)C_(3). As a result, the composite containing 1 wt.% Cu possesses the highest strength, elastic modulus and hardness among all composites, due to the maintenance of the original structure of CNTs. Moreover, the increase of Cu content can change the dominant strengthening mechanisms for the enhanced strength of the fabricated composites.
基金Projects(50971038,51174058)supported by the National Natural Science Foundation of China
文摘The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.
基金Projects(51572112,51401034)supported by the National Natural Science Foundation of ChinaProject(BK20151340)supported by the Natural Science Foundation of Jiangsu Province,China+3 种基金Projects(2014-XCL-002,TD-XCL-004)supported by the Six Talent Peaks Project of Jiangsu Province,ChinaProject(BRA2017387)supported by the 333 Talents Project of Jiangsu Province,ChinaProject([2015]26)supported by the Innovation/Entrepreneurship Program of Jiangsu Province,ChinaProject([2016]15)supported by the Qing Lan Project,China
文摘The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.
基金Project(10037273) supported by the Ministry of Knowledge Economy,Korea
文摘The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures for several Al/Cu 2-ply sheets fabricated under different reduction ratios between 30% and 65% were verified by transmission electron microscopy(TEM). Taking the difference of interface microstructure into consideration, 3-point bending and peel tests were performed for obtaining flexural and bonding strengths for Al/Cu 2-ply sheets. The effect of the quantified areas of metallurgical bonding at interfaces on the bonding strength was also discussed. The results show that both the bonding and flexural strengths for Al/Cu 2-ply sheets are reduced by decreasing the reduction ratio during the roll bonding process, which is strongly correlated with the interface microstructure. This was especially verified by observing the interface delamination from the 3-point bent samples.