A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were ob...A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.展开更多
The hydrothiolations of alkynes/alkenes with thiols is an atom-economic and thus attractive method for the constructions of C‒S bonds.Here Ir_(2)S_(3)/ZnIn_(2)S_(4)nanocomposites with varied Ir_(2)S_(3)loadings were o...The hydrothiolations of alkynes/alkenes with thiols is an atom-economic and thus attractive method for the constructions of C‒S bonds.Here Ir_(2)S_(3)/ZnIn_(2)S_(4)nanocomposites with varied Ir_(2)S_(3)loadings were obtained by one-pot solvothermal method from ZnCl_(2),InCl_(3)and thioacetamide with IrCl_(3).The loading of Ir_(2)S_(3)on the surface of ZnIn_(2)S_(4)promoted the hydrothiolations of alkenes and alkynes,with an optimum performance observed over 0.5 mol%Ir_(2)S_(3)/ZnIn_(2)S_(4)nanocomposite.Based on the studies on the performance of several other cocatalysts(MoS2,NiS and Pd)loaded ZnIn_(2)S_(4)and the EIS analyses,it was proposed that the superior performance over Ir_(2)S_(3)/ZnIn_(2)S_(4)nanocomposite can be ascribed to an improved efficiency on the photogeneration of the thiyl radicals by loading Ir_(2)S_(3)as well as its inactivity for photocatalytic hydrogen evolution,a side reaction in the light initiated hydrothiolation reaction over ZnIn_(2)S_(4).This study not only demonstrates an efficient and green strategy to synthesize thiolated products under visible light based on semiconductor photocatalysis,but also provides some guidances for the design and development of photocatalytic systems for light induced organic syntheses.展开更多
The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information...The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information on the reaction pathways of these alkenes and alkynes with H-GaN (0001) surface is provided, which indicates that the reactions contain two steps separated by the metastable intermediates: elementary addition reaction and H-abstraction process. From the energy curves, the reactions are clearly viable in the cases of ethene, styrene and phenylacetylene; while for ethyne, the H-abstraction barrier is higher than the desorption barrier of the intermediate, so the adsorbed C2H2 in intermediate is more likely to be desorbed back into the gas phase than to form a stable adsorbed species. Furthermore, it is obvious that for either alkenes or alkynes, the systems substituted by phenyl have more stable intermediates because π conjugation could improve their stabilities.展开更多
A novel CF_3-containing building block, (Z)-ethyl 3-bromo-4,4,4-trifluoro-2-butenoate, was easily prepared from CF_3CBr_3, the former reacted with alkynes Or organozinc reagents in the presence of Pd complexes to affo...A novel CF_3-containing building block, (Z)-ethyl 3-bromo-4,4,4-trifluoro-2-butenoate, was easily prepared from CF_3CBr_3, the former reacted with alkynes Or organozinc reagents in the presence of Pd complexes to afford useful CF_3-containing intermediates in good yield.展开更多
BrCF2CF2CH=CHCH2X(x=Cl, OAc, OH) reacted smoothly with alkynes in the presence of BrCo(dmgh)2Py/Zn, giving 4,4,5,5-tetrafluorocyclopentene derivatives in moderate yields.
Initiated by CP_2TiCl_2/Fe redox system,2-halotetrafluoroethyl iodides readily reacted with alkynes or alkenes to give 1:1 adducts in good to excellent yields.
Palladium-catalyzed the Sonogashira coupling reaction of 3-halogen-2-aminopyridines 1 with terminal alkynes 2 afforded the corresponding 21 target products 3a-3u in the presence of palladium catalyst. The structure of...Palladium-catalyzed the Sonogashira coupling reaction of 3-halogen-2-aminopyridines 1 with terminal alkynes 2 afforded the corresponding 21 target products 3a-3u in the presence of palladium catalyst. The structure of target products 3a-3u was confirmed and characterized by 1H NMR, 13C NMR, and HRMS. The influences of different kinds of catalyst loading, bases, substrates and temperature were also investigated. Under the optimized conditions, including 2.5 mol% Pd?(CF3COO)2, 5 mol% PPh3 and 5 mol% CuI as additive, 1 mL Et3N, substrate 1 with terminal alkynes 2 for the cross-coupling reactions at 100°C for 3 h in DMF afforded the corresponding products of 2-amino-3-alkynylpyridines 3 in moderate to excellent yields (72%?-?96%). The present methodology has provided an effective synthetic method including operational convenience, high efficiency and wide-application.展开更多
A novel catalytic reaction has been developed for the nucleophilic addition of terminal alkynes toα,β‐unsaturated‐γ‐lactams via a cyclic N‐acyliminium ion intermediate. This simple reaction pro‐ceeds rapidly u...A novel catalytic reaction has been developed for the nucleophilic addition of terminal alkynes toα,β‐unsaturated‐γ‐lactams via a cyclic N‐acyliminium ion intermediate. This simple reaction pro‐ceeds rapidly under mild conditions, and provided a practical approach for the synthesis of a wide range of 5‐alkynyl‐2‐pyrrolidinones in moderate to good yields (45%–76%).展开更多
Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, an...Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, and halide) radicals initiated by visible light can undergo radical addition to a carbon-carbon triple bond. Upon further transformation, the desired difunctionalized products are obtained. Some organometallic complexes can be activated by visible light;the difunctionalization of alkynes is catalyzed by these species. Other reagents like 1,3-dipole precursors could also react with alkynes to give difunctionalization products;here, the 1,3-dipole derivatives are obtained by visible light photocatalysis. So far, the strategy has been succeeded in the formation of C–C bonds and C–X bonds. Several valuable chemical skeletons have been constructed under mild conditions. However, high regio-and stereoselectivities in some direct difunctionalization methodologies are yet to be achieved.展开更多
Highly selective electrocatalytic semihydrogenation of alkynes to alkenes with water as the hydrogen source over palladium-based electrocatalysts is significant but remains a great challenge because of the excessive h...Highly selective electrocatalytic semihydrogenation of alkynes to alkenes with water as the hydrogen source over palladium-based electrocatalysts is significant but remains a great challenge because of the excessive hydrogenation capacity of palladium.Here,we propose that an ideal palladium catalyst should possess weak alkene adsorption and inhibit subsurface hydrogen formation to stimulate the high selectivity of alkyne semihydrogenation.Therefore,sulfur-modified Pd nanowires(Pd-S NWs)are designedly prepared by a solid-solution interface sulfuration method with KSCN as the sulfur source.The introduction of S weakens the alkene adsorption and prevents the diffusion of active hydrogen(H^(*))into the Pd lattice to form unfavorable subsurface H^(*).As a result,electrocatalytic alkyne semihydrogenation is achieved over a Pd-S NWs cathode with wide substrate scopes,potential-independent up to 99%alkene selectivity,good fragile groups compatibility,and easily synthesized deuterated alkenes.An adsorbed hydrogen addition mechanism of this semihydrogenation reaction is proposed.Importantly,an easy modification of commercial Pd/C by in situ addition of SCN–enabling the gram-scale synthesis of an alkene with 99%selectivity and 95%conversion highlights the promising potential of our method.展开更多
Despite of extensive attention on the copper-based heterogeneous oxidative homocoupling of alkynes(OHA)to 1,3-diynes,the photocatalytic OHA is scarcely investigated.By screening copper-containing spinel catalysts,we d...Despite of extensive attention on the copper-based heterogeneous oxidative homocoupling of alkynes(OHA)to 1,3-diynes,the photocatalytic OHA is scarcely investigated.By screening copper-containing spinel catalysts,we discovered that a prereduced copper ferrite(CuFe2O4)not only can catalyze the thermocatalytic OHA but also is efficient for the photocatalytic OHA under visible light irradiation.It is found that the sol-gel combustion(SG)method and the partial reduction at 250 ℃ can result in the optimal CuFe2O4-SG-250 catalyst showing high activity and stability.Surface oxidized Cu2O is evidenced to be the active species for the thermocatalytic OHA,whereas metallic copper nanopaticles(CuNPs)are identified as the active sites for the photocatalytic OHA.The efficiency of photocatalytic OHA at ambient temperature is comparable to that of thermocatalytic OHA at 120 ℃,and the CuFe2O4-SG-250 catalyst can be magnetically separated and reused at least five times.The localized surface plasmon resonance effect of CuNPs contributes to visible light-induced photocatalytic OHA.展开更多
The stereospecific carbocupration of terminal alkynes via higher order cuprates to give 1,1'-disubstituted olefins with 99% configuration purity is described. Its synthetic utility as a general method for the prep...The stereospecific carbocupration of terminal alkynes via higher order cuprates to give 1,1'-disubstituted olefins with 99% configuration purity is described. Its synthetic utility as a general method for the preparation of substituted olefins is further illustrated by the direct synthesis of (±)-ipsenol and (E)-β-farnesene with highly geometric purity of the carbon-carbon double bond.展开更多
(E)-α-Iodovinyl sulfides 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol % of Pd(PPh3)4 and 10 mol % of CuI to afford the correspo...(E)-α-Iodovinyl sulfides 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol % of Pd(PPh3)4 and 10 mol % of CuI to afford the corresponding 1, 3-enynylsulfides 3 stereospecifically in high yields.展开更多
(E)-α-Iodovinyl sulfones 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol% of Pd(PPh3)4 and 10 mol% of CuI to stereospecifically af...(E)-α-Iodovinyl sulfones 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol% of Pd(PPh3)4 and 10 mol% of CuI to stereospecifically afford the corresponding (Z)-2-sulfonyl-substituted 1,3-enynes 3 in high yields.展开更多
The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe_3(CO)_(12) with R-C≡C-R'(R = Fc(Ferrocenyl); R′ = Ph(Phenyl), Fc, H). The hexacarbonyldiiron cluster wit...The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe_3(CO)_(12) with R-C≡C-R'(R = Fc(Ferrocenyl); R′ = Ph(Phenyl), Fc, H). The hexacarbonyldiiron cluster with ferracyclopentadiene ring(μ_2, η~4-C_4Ph_4)Fe_2(CO)_6(1) and one tetraphenyl substituted cyclopentadienone(Ph_4C_4CO)(2) were simultaneously obtained by the reaction of Fe_3(CO)_(12) with alkyne(Ph-C≡C-Ph). Only one ferrole cluster(μ_2, η~4-C_4Fc_2H_2)Fe_2(CO)_6(3) was separated by using Fc-C≡C-H as alkyne. One tri-carbonyl iron complex(η~4-C_4Fc_4CO)Fe(CO)_3(4) and an unexpected new cyclic ketone compound 2,2,4,5-tetraferrocenylcyclopenta-4-en-1,3-di-one [Fc_4C_3(CO)_2](5) were obtained by using Fc-C≡C-Fc as alkyne. A new complex(η4-2,4-diphenyl-3,5-diferrocenylcyclopenta-2,4-dien-1-one)-tricarbonyl iron(η~4-C_4Ph_2Fc_2CO)Fe(CO)_3(6) was synthesized by the reaction of Fe_3(CO)_(12) with Fc-C≡C-Ph. The structures of compounds 1~6 were determined by X-ray single-crystal diffraction and spectroscopic characterization. The crystal structures of two new compounds 5 and 6 were analyzed. Our experimental results reveal the structural models of the reaction products are affected by the kinds of substituents from alkynes R-C≡C-R′.展开更多
Lewis base catalyzed and Brønsted acid controlled chemodivergent electrophilic selenofunctionalizations of alkynes were developed for the first time.Various selenium-containing tetrasubstituted alkenes were readi...Lewis base catalyzed and Brønsted acid controlled chemodivergent electrophilic selenofunctionalizations of alkynes were developed for the first time.Various selenium-containing tetrasubstituted alkenes were readily obtained in moderate to excellent yields with complete E/Z selectivities.As the substrates were 1-ethynyl naphthol derivatives,linear selenium-containing tetrasubstituted alkenes were produced via intermolecular oxygen nucleophilic attack in the absence of acid additive;in contrast,cyclic selenium-containing tetrasubstituted alkenes were generated through intramolecular carbon nucleophilic capture with the addition of Brønsted acid.展开更多
The rhodium-catalyzed C-H bond activation and cyclization of 3-oxopent-4-enenitriles with alkynes proceed efficiently.Various 2H-pyrans with multiple substituents are achieved in good yields through regioselective for...The rhodium-catalyzed C-H bond activation and cyclization of 3-oxopent-4-enenitriles with alkynes proceed efficiently.Various 2H-pyrans with multiple substituents are achieved in good yields through regioselective formation of C-O and C-C bonds.Transformations involving hydroxy-alkynoates resulted in products with a furo[3,4-b]pyran skeleton via further intramolecular ester exchange processes.Different from the traditional"1-oxatrienes pathway",this method for the synthesis of useful 2H-pyrans possesses certain highlights in terms of readily available substrates,stable and easily derivatized products,gentle and convenient operation process,and step and atomeconomy.展开更多
The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to ...The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.展开更多
文摘A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.
文摘The hydrothiolations of alkynes/alkenes with thiols is an atom-economic and thus attractive method for the constructions of C‒S bonds.Here Ir_(2)S_(3)/ZnIn_(2)S_(4)nanocomposites with varied Ir_(2)S_(3)loadings were obtained by one-pot solvothermal method from ZnCl_(2),InCl_(3)and thioacetamide with IrCl_(3).The loading of Ir_(2)S_(3)on the surface of ZnIn_(2)S_(4)promoted the hydrothiolations of alkenes and alkynes,with an optimum performance observed over 0.5 mol%Ir_(2)S_(3)/ZnIn_(2)S_(4)nanocomposite.Based on the studies on the performance of several other cocatalysts(MoS2,NiS and Pd)loaded ZnIn_(2)S_(4)and the EIS analyses,it was proposed that the superior performance over Ir_(2)S_(3)/ZnIn_(2)S_(4)nanocomposite can be ascribed to an improved efficiency on the photogeneration of the thiyl radicals by loading Ir_(2)S_(3)as well as its inactivity for photocatalytic hydrogen evolution,a side reaction in the light initiated hydrothiolation reaction over ZnIn_(2)S_(4).This study not only demonstrates an efficient and green strategy to synthesize thiolated products under visible light based on semiconductor photocatalysis,but also provides some guidances for the design and development of photocatalytic systems for light induced organic syntheses.
基金Supported by the National Natural Science Foundation of China (No 20673019)
文摘The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information on the reaction pathways of these alkenes and alkynes with H-GaN (0001) surface is provided, which indicates that the reactions contain two steps separated by the metastable intermediates: elementary addition reaction and H-abstraction process. From the energy curves, the reactions are clearly viable in the cases of ethene, styrene and phenylacetylene; while for ethyne, the H-abstraction barrier is higher than the desorption barrier of the intermediate, so the adsorbed C2H2 in intermediate is more likely to be desorbed back into the gas phase than to form a stable adsorbed species. Furthermore, it is obvious that for either alkenes or alkynes, the systems substituted by phenyl have more stable intermediates because π conjugation could improve their stabilities.
基金This work was partially supported by the National Natural Science Foundation of China.
文摘A novel CF_3-containing building block, (Z)-ethyl 3-bromo-4,4,4-trifluoro-2-butenoate, was easily prepared from CF_3CBr_3, the former reacted with alkynes Or organozinc reagents in the presence of Pd complexes to afford useful CF_3-containing intermediates in good yield.
文摘BrCF2CF2CH=CHCH2X(x=Cl, OAc, OH) reacted smoothly with alkynes in the presence of BrCo(dmgh)2Py/Zn, giving 4,4,5,5-tetrafluorocyclopentene derivatives in moderate yields.
文摘Initiated by CP_2TiCl_2/Fe redox system,2-halotetrafluoroethyl iodides readily reacted with alkynes or alkenes to give 1:1 adducts in good to excellent yields.
文摘Palladium-catalyzed the Sonogashira coupling reaction of 3-halogen-2-aminopyridines 1 with terminal alkynes 2 afforded the corresponding 21 target products 3a-3u in the presence of palladium catalyst. The structure of target products 3a-3u was confirmed and characterized by 1H NMR, 13C NMR, and HRMS. The influences of different kinds of catalyst loading, bases, substrates and temperature were also investigated. Under the optimized conditions, including 2.5 mol% Pd?(CF3COO)2, 5 mol% PPh3 and 5 mol% CuI as additive, 1 mL Et3N, substrate 1 with terminal alkynes 2 for the cross-coupling reactions at 100°C for 3 h in DMF afforded the corresponding products of 2-amino-3-alkynylpyridines 3 in moderate to excellent yields (72%?-?96%). The present methodology has provided an effective synthetic method including operational convenience, high efficiency and wide-application.
基金supported by the National Natural Science Foundation of China(21222203,21172226,21133011)
文摘A novel catalytic reaction has been developed for the nucleophilic addition of terminal alkynes toα,β‐unsaturated‐γ‐lactams via a cyclic N‐acyliminium ion intermediate. This simple reaction pro‐ceeds rapidly under mild conditions, and provided a practical approach for the synthesis of a wide range of 5‐alkynyl‐2‐pyrrolidinones in moderate to good yields (45%–76%).
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR19B020001)the National Natural Science Foundation of China(21472162,21772171)the National Basic Research Program of China(2015CB856600)~~
文摘Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, and halide) radicals initiated by visible light can undergo radical addition to a carbon-carbon triple bond. Upon further transformation, the desired difunctionalized products are obtained. Some organometallic complexes can be activated by visible light;the difunctionalization of alkynes is catalyzed by these species. Other reagents like 1,3-dipole precursors could also react with alkynes to give difunctionalization products;here, the 1,3-dipole derivatives are obtained by visible light photocatalysis. So far, the strategy has been succeeded in the formation of C–C bonds and C–X bonds. Several valuable chemical skeletons have been constructed under mild conditions. However, high regio-and stereoselectivities in some direct difunctionalization methodologies are yet to be achieved.
文摘Highly selective electrocatalytic semihydrogenation of alkynes to alkenes with water as the hydrogen source over palladium-based electrocatalysts is significant but remains a great challenge because of the excessive hydrogenation capacity of palladium.Here,we propose that an ideal palladium catalyst should possess weak alkene adsorption and inhibit subsurface hydrogen formation to stimulate the high selectivity of alkyne semihydrogenation.Therefore,sulfur-modified Pd nanowires(Pd-S NWs)are designedly prepared by a solid-solution interface sulfuration method with KSCN as the sulfur source.The introduction of S weakens the alkene adsorption and prevents the diffusion of active hydrogen(H^(*))into the Pd lattice to form unfavorable subsurface H^(*).As a result,electrocatalytic alkyne semihydrogenation is achieved over a Pd-S NWs cathode with wide substrate scopes,potential-independent up to 99%alkene selectivity,good fragile groups compatibility,and easily synthesized deuterated alkenes.An adsorbed hydrogen addition mechanism of this semihydrogenation reaction is proposed.Importantly,an easy modification of commercial Pd/C by in situ addition of SCN–enabling the gram-scale synthesis of an alkene with 99%selectivity and 95%conversion highlights the promising potential of our method.
基金supported by the National Natural Science Foundation of China (21673088)~~
文摘Despite of extensive attention on the copper-based heterogeneous oxidative homocoupling of alkynes(OHA)to 1,3-diynes,the photocatalytic OHA is scarcely investigated.By screening copper-containing spinel catalysts,we discovered that a prereduced copper ferrite(CuFe2O4)not only can catalyze the thermocatalytic OHA but also is efficient for the photocatalytic OHA under visible light irradiation.It is found that the sol-gel combustion(SG)method and the partial reduction at 250 ℃ can result in the optimal CuFe2O4-SG-250 catalyst showing high activity and stability.Surface oxidized Cu2O is evidenced to be the active species for the thermocatalytic OHA,whereas metallic copper nanopaticles(CuNPs)are identified as the active sites for the photocatalytic OHA.The efficiency of photocatalytic OHA at ambient temperature is comparable to that of thermocatalytic OHA at 120 ℃,and the CuFe2O4-SG-250 catalyst can be magnetically separated and reused at least five times.The localized surface plasmon resonance effect of CuNPs contributes to visible light-induced photocatalytic OHA.
基金Supported by the National Natural Science Foundation of China
文摘The stereospecific carbocupration of terminal alkynes via higher order cuprates to give 1,1'-disubstituted olefins with 99% configuration purity is described. Its synthetic utility as a general method for the preparation of substituted olefins is further illustrated by the direct synthesis of (±)-ipsenol and (E)-β-farnesene with highly geometric purity of the carbon-carbon double bond.
基金We thank the National Natural Science Foundation of China (Project 20462002) Natural Science Foundation of Jiangxi Province (Project 0420015) for financial support.
文摘(E)-α-Iodovinyl sulfides 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol % of Pd(PPh3)4 and 10 mol % of CuI to afford the corresponding 1, 3-enynylsulfides 3 stereospecifically in high yields.
基金the National Natural Science Foundation of China(No.20462002)Natural Science Foundation of Jiangxi Province(No.0420015)for financial support.
文摘(E)-α-Iodovinyl sulfones 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol% of Pd(PPh3)4 and 10 mol% of CuI to stereospecifically afford the corresponding (Z)-2-sulfonyl-substituted 1,3-enynes 3 in high yields.
基金supported by the National Natural Science Foundation of China(Nos.21266019,21062011 and 21462029)Inner Mongolia Autonomous Region Higher Scientific Research Project(NJZY14060)
文摘The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe_3(CO)_(12) with R-C≡C-R'(R = Fc(Ferrocenyl); R′ = Ph(Phenyl), Fc, H). The hexacarbonyldiiron cluster with ferracyclopentadiene ring(μ_2, η~4-C_4Ph_4)Fe_2(CO)_6(1) and one tetraphenyl substituted cyclopentadienone(Ph_4C_4CO)(2) were simultaneously obtained by the reaction of Fe_3(CO)_(12) with alkyne(Ph-C≡C-Ph). Only one ferrole cluster(μ_2, η~4-C_4Fc_2H_2)Fe_2(CO)_6(3) was separated by using Fc-C≡C-H as alkyne. One tri-carbonyl iron complex(η~4-C_4Fc_4CO)Fe(CO)_3(4) and an unexpected new cyclic ketone compound 2,2,4,5-tetraferrocenylcyclopenta-4-en-1,3-di-one [Fc_4C_3(CO)_2](5) were obtained by using Fc-C≡C-Fc as alkyne. A new complex(η4-2,4-diphenyl-3,5-diferrocenylcyclopenta-2,4-dien-1-one)-tricarbonyl iron(η~4-C_4Ph_2Fc_2CO)Fe(CO)_3(6) was synthesized by the reaction of Fe_3(CO)_(12) with Fc-C≡C-Ph. The structures of compounds 1~6 were determined by X-ray single-crystal diffraction and spectroscopic characterization. The crystal structures of two new compounds 5 and 6 were analyzed. Our experimental results reveal the structural models of the reaction products are affected by the kinds of substituents from alkynes R-C≡C-R′.
基金the National Natural Science Foundation of China(Nos.22071149,21871178)the Natural Science Foundation of Shanghai(23ZR1428200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning for financial support.
文摘Lewis base catalyzed and Brønsted acid controlled chemodivergent electrophilic selenofunctionalizations of alkynes were developed for the first time.Various selenium-containing tetrasubstituted alkenes were readily obtained in moderate to excellent yields with complete E/Z selectivities.As the substrates were 1-ethynyl naphthol derivatives,linear selenium-containing tetrasubstituted alkenes were produced via intermolecular oxygen nucleophilic attack in the absence of acid additive;in contrast,cyclic selenium-containing tetrasubstituted alkenes were generated through intramolecular carbon nucleophilic capture with the addition of Brønsted acid.
基金supported by the National Natural Science Foundation of China(No.22101152)the Youth Talent Program Startup Foundation of Qufu Normal University(No.614201)the School-Level Research Projects of Yancheng Institute of Technology(No.xjr2020044).
文摘The rhodium-catalyzed C-H bond activation and cyclization of 3-oxopent-4-enenitriles with alkynes proceed efficiently.Various 2H-pyrans with multiple substituents are achieved in good yields through regioselective formation of C-O and C-C bonds.Transformations involving hydroxy-alkynoates resulted in products with a furo[3,4-b]pyran skeleton via further intramolecular ester exchange processes.Different from the traditional"1-oxatrienes pathway",this method for the synthesis of useful 2H-pyrans possesses certain highlights in terms of readily available substrates,stable and easily derivatized products,gentle and convenient operation process,and step and atomeconomy.
基金supported by the Xuzhou Key Research and Development Program(Social Development)(No.KC23298)the National Natural Science Foundation of China(No.22271122)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20211549)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2903).
文摘The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.