CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ...CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.展开更多
Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interp...Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter(GSI-EnKF) framework were previously developed and tested with a mesoscale convective system(MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational(EnVar) hybrid data assimilation(DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar(PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation.展开更多
Tides represent a crucial dynamic process in the ocean and play a vital role in both marine and atmospheric studies,thus,accurate simulation of tidal processes is of the utmost importance in tidal circulation models.B...Tides represent a crucial dynamic process in the ocean and play a vital role in both marine and atmospheric studies,thus,accurate simulation of tidal processes is of the utmost importance in tidal circulation models.Bazed on the sequential data assimilation method and the concept of the Kalman gain matrix,this paper proposes a new nudging method with spatially dependent coefficients for tidal assimilation.The spatial-dependent nudging method not only retains the advantages of the traditional nudging method but also facilitates the direct determination of a more reasonable spatial distribution of nudging coefficients.Utilizing the M_(2)tidal constituent(the main lunar semidiurnal tide)as an illustration,we conducted assimilation experiments of sea-level data to the barotropic circulation and tide model to assess the global harmonic constants of the M_(2)constituent.The results demonstrate that the spatial-dependent nudging method successfully mitigates deviations of tidal phase lag.Following assimilation using the new method,the deviations of the M_(2)tidal amplitude and phase lag can be reduced by 47%and 18%compared to the traditional nudging method,respectively,while the respective values for the non-assimilated case are as much as 9%and 11%.We also applied the S-nudging method to realistic tidal simulations and noted a significantly enhanced effectiveness relative to traditional methods,making it highly valuable for modeling oceanic tidal circulations.展开更多
Glucosinolates(GSLs) are a group of nitrogen-and sulfur-containing secondary metabolites, synthesized primarily in members of the Brassicaceae family, that play an important role in food flavor, plant antimicrobial ac...Glucosinolates(GSLs) are a group of nitrogen-and sulfur-containing secondary metabolites, synthesized primarily in members of the Brassicaceae family, that play an important role in food flavor, plant antimicrobial activity, resistance to insect attack, stress tolerance, and human anti-cancer effects. As a sulfur-containing compound, glutathione has a strong connection with GSLs biosynthesis as a sulfur donor or redox system, and exists in reduced(glutathione;GSH) and oxidized(glutathione disulfide;GSSG) forms. However, the mechanism of GSH regulating GSLs biosynthesis remainds unclear. Hence, the exogenous therapy to pakchoi under normal growth condition and sulfur deficiency condition were conducted in this work to explore the relevant mechanism. The results showed that exogenous application of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased the transcript levels of GSLs synthesis-related genes and transcription factors, as well as sulfur assimilation-related genes under the normal growth condition. Application of exogenous GSH inhibited the expression of GSLs synthesis-and sulfur assimilation-related genes under the normal condition, while the GSLs biosynthesis and the sulfur assimilation pathway were activated by exogenous application of GSH when the content of GSH in vivo of plants decreased owing to sulfur deficiency. Moreover,exogenous application of GSSG increased the transcript levels of GSLs synthesis-and sulfur assimilation-related genes under the normal growth condition and under sulfur deficiency. The present work provides new insights into the molecular mechanisms of GSLs biosynthesis underlying glutathione regulation.展开更多
Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China M...Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.展开更多
The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/op...The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.展开更多
An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection...An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection term,the discrete method needs to be chosen very carefully.The finite analytic method is an alternative scheme to solve the advection-diffusion equation.As a combination of analytical and numerical methods,it not only has high calculation accuracy but also holds the characteristic of the auto upwind.To demonstrate its ability,the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method.The more widely used upwind difference method is used as a control approach.The result indicates that the finite analytic method has higher accuracy than the upwind difference method.For the two-dimensional case,the finite analytic method still has a better performance.In the three-dimensional variational assimilation experiment,the finite analytic method can effectively improve analysis field accuracy,and its effect is significantly better than the upwind difference and the central difference method.Moreover,it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.展开更多
Biomass from SAR data was assimilated into crop growth model to describe relationship between crop biomass and crop growth time to improve estimation accuracy of biomass. In addition, inverse model was established in ...Biomass from SAR data was assimilated into crop growth model to describe relationship between crop biomass and crop growth time to improve estimation accuracy of biomass. In addition, inverse model was established in order to estimate biomass according to relationship between biomass and backscattering coefficients from SAR data. Based on cost function, parameters of growth model were optimized as per conjugate gradient method, minimizing the differences between estimated biomass and inversion values from SAR data. The results indicated that the simulated biomass using the revised growth model with SAR data was consistent with the measured one in time distribution and even higher in accuracy than that without SAR data. Hence, the key parameters of crop growth model could be revised by real-time growth information from SAR data and accuracy of the simulated biomass could be improved accordingly.展开更多
For the prediction of ENSO, the accuracy of the model including the parameters, initial value and others of the model is important, which can be retrieved by the variational data assimilation methods developed in rece...For the prediction of ENSO, the accuracy of the model including the parameters, initial value and others of the model is important, which can be retrieved by the variational data assimilation methods developed in recent years. However, when the nonlinearity of the model is quite strong, the effect of the improvement made by the 4-D variational data assimilation may be poor due to the bad approximation of the tangent linear model to the original model. So in the paper the ideas in the optimal control is introduced to improve the effect of 4-DVAR in the inversion of the parameters of a nonlinear dynamic ENSO model. The results indicate that when the terminal controlling term is added to the cost functional of 4DVAR, which originated from the optimal control, the effect of the inversion may be largely improved comparing to the traditional 4DVAR, as can be especially obvious from the phase orbit of the model variables. The results in the paper also suggest that the method of 4DVAR in combination with optimal control cannot only reduce the error resulting from the inaccuracy of the model parameters but also can correct the parameters itself. This gives a good method in modifying the model and improving the quality of prediction of ENSO.展开更多
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim...This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.展开更多
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmosp...Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmospheric analysis/reanalysis.This paper reviews the development of satellite IR data assimilation in NWP in recent years,especially the assimilation of all-sky satellite IR observations.The major challenges and future directions are outlined and discussed.展开更多
Aircraft Meteorological Data Relay(AMDAR)observations have been widely used in numerical weather prediction(NWP)because of its high spatiotemporal resolution.The observational error of AMDAR is influenced by aircraft ...Aircraft Meteorological Data Relay(AMDAR)observations have been widely used in numerical weather prediction(NWP)because of its high spatiotemporal resolution.The observational error of AMDAR is influenced by aircraft flight altitude and atmospheric condition.In this study,the wind speed and altitude dependent observational error of AMDAR is estimated.The statistical results show that the temperature and the observational error in wind speeds slightly decrease as altitude increases,and the observational error in wind speed increases as wind speed increases.Pseudo single AMDAR observation assimilation tests demonstrate that the wind speed and altitude dependent observational error can provide more reasonable analysis increment.Furthermore,to assess the performance of wind speed and altitude dependent observational error on data assimilation and forecasting,two-month 3-hourly cycling data assimilation and forecast experiments based on the Weather Research and Forecasting Model(WRF)and its Data Assimilation system(WRFDA)are performed for the period during 1 September-31 October,2017.The results of the two-month 3-hourly cycling experiments indicate that new observational error improves analysis and forecast of wind field and geo-potential height,and has slight improvements on temperature.The Fractions Skill Score(FSS)of the 6-h accumulated precipitation shows that new wind speed and altitude dependent observational error leads to better precipitation forecast skill than the default observational error in the WRFDA does.展开更多
A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS ope...A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A two-dimensional variation assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analyses fields based on T213 results and routine observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are also carried out, which correspond respectively to the initialization scheme with two-dimensional variation (2D - Var), three-dimensional observational nudging and direct assimilation of satellite data. It is found that, comparing with the experiments without satellite data assimilation, the first two assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce by 18 % at 12 h for 2D - Var and from about 16 % at 24 h to about 35 % at 48 h for observational nudging. The simulated results based on assimilating different kinds of satellite data are also compared.展开更多
The tangent linear(TL) models and adjoint(AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great effo...The tangent linear(TL) models and adjoint(AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great efforts, either by hand, or by automatic differentiation tools. In order to break these limitations, a new data assimilation system, dual-number data assimilation system(DNDAS), is designed based on the dual-number automatic differentiation principles. We investigate the performance of DNDAS with two different optimization schemes and subsequently give a discussion on whether DNDAS is appropriate for high-dimensional forecast models. The new data assimilation system can avoid the complicated reverse integration of the adjoint model, and it only needs the forward integration in the dual-number space to obtain the cost function and its gradient vector concurrently. To verify the correctness and effectiveness of DNDAS, we implemented DNDAS on a simple ordinary differential model and the Lorenz-63 model with different optimization methods. We then concentrate on the adaptability of DNDAS to the Lorenz-96 model with high-dimensional state variables. The results indicate that whether the system is simple or nonlinear, DNDAS can accurately reconstruct the initial condition for the forecast model and has a strong anti-noise characteristic. Given adequate computing resource, the quasi-Newton optimization method performs better than the conjugate gradient method in DNDAS.展开更多
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread atte...Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.展开更多
Advancements in uncrewed aircrafts and communications technologies have led to a wave of interest and investment in unmanned aircraft systems(UASs)and urban air mobility(UAM)vehicles over the past decade.To support th...Advancements in uncrewed aircrafts and communications technologies have led to a wave of interest and investment in unmanned aircraft systems(UASs)and urban air mobility(UAM)vehicles over the past decade.To support this emerging aviation application,concepts for UAS/UAM traffic management(UTM)systems have been explored.Accurately characterizing and predicting the microscale weather conditions,winds in particular,will be critical to safe and efficient operations of the small UASs/UAM aircrafts within the UTM.This study implements a reduced order data assimilation approach to reduce discrepancies between the predicted urban wind speed with computational fluid dynamics(CFD)Reynolds-averaged Navier Stokes(RANS)model with real-world,limited and sparse observations.The developed data assimilation system is UrbanDA.These observations are simulated using a large eddy simulation(LES).The data assimilation approach is based on the time-independent variational framework and uses space reduction to reduce the memory cost of the process.This approach leads to error reduction throughout the simulated domain and the reconstructed field is different than the initial guess by ingesting wind speeds at sensor locations and hence taking into account flow unsteadiness in a time when only the mean flow quantities are resolved.Different locations where wind sensors can be installed are discussed in terms of their impact on the resulting wind field.It is shown that near-wall locations,near turbulence generation areas with high wind speeds have the highest impact.Approximating the model error with its principal mode provides a better agreement with the truth and the hazardous areas for UAS navigation increases by more than 10%as wind hazards resulting from buildings wakes are better simulated through this process.展开更多
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, ...The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.展开更多
基金supported by the General Project of Top-Design of Multi-Scale Nature-Social ModelsData Support and Decision Support System for NSFC Carbon Neutrality Major Project(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.
基金supported by NOAA JTTI award via Grant #NA21OAR4590165, NOAA GOESR Program funding via Grant #NA16OAR4320115provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement #NA11OAR4320072, U.S. Department of Commercesupported by the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce via Grant #NA18NWS4680063。
文摘Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter(GSI-EnKF) framework were previously developed and tested with a mesoscale convective system(MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational(EnVar) hybrid data assimilation(DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar(PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation.
基金supported by the National Natural Science Foundation of China(Grant No.42276011 and Grant No.U23A2032).
文摘Tides represent a crucial dynamic process in the ocean and play a vital role in both marine and atmospheric studies,thus,accurate simulation of tidal processes is of the utmost importance in tidal circulation models.Bazed on the sequential data assimilation method and the concept of the Kalman gain matrix,this paper proposes a new nudging method with spatially dependent coefficients for tidal assimilation.The spatial-dependent nudging method not only retains the advantages of the traditional nudging method but also facilitates the direct determination of a more reasonable spatial distribution of nudging coefficients.Utilizing the M_(2)tidal constituent(the main lunar semidiurnal tide)as an illustration,we conducted assimilation experiments of sea-level data to the barotropic circulation and tide model to assess the global harmonic constants of the M_(2)constituent.The results demonstrate that the spatial-dependent nudging method successfully mitigates deviations of tidal phase lag.Following assimilation using the new method,the deviations of the M_(2)tidal amplitude and phase lag can be reduced by 47%and 18%compared to the traditional nudging method,respectively,while the respective values for the non-assimilated case are as much as 9%and 11%.We also applied the S-nudging method to realistic tidal simulations and noted a significantly enhanced effectiveness relative to traditional methods,making it highly valuable for modeling oceanic tidal circulations.
基金funded by the National Natural Science Foundation of China (Grant Nos.31972394 and 31501748)。
文摘Glucosinolates(GSLs) are a group of nitrogen-and sulfur-containing secondary metabolites, synthesized primarily in members of the Brassicaceae family, that play an important role in food flavor, plant antimicrobial activity, resistance to insect attack, stress tolerance, and human anti-cancer effects. As a sulfur-containing compound, glutathione has a strong connection with GSLs biosynthesis as a sulfur donor or redox system, and exists in reduced(glutathione;GSH) and oxidized(glutathione disulfide;GSSG) forms. However, the mechanism of GSH regulating GSLs biosynthesis remainds unclear. Hence, the exogenous therapy to pakchoi under normal growth condition and sulfur deficiency condition were conducted in this work to explore the relevant mechanism. The results showed that exogenous application of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased the transcript levels of GSLs synthesis-related genes and transcription factors, as well as sulfur assimilation-related genes under the normal growth condition. Application of exogenous GSH inhibited the expression of GSLs synthesis-and sulfur assimilation-related genes under the normal condition, while the GSLs biosynthesis and the sulfur assimilation pathway were activated by exogenous application of GSH when the content of GSH in vivo of plants decreased owing to sulfur deficiency. Moreover,exogenous application of GSSG increased the transcript levels of GSLs synthesis-and sulfur assimilation-related genes under the normal growth condition and under sulfur deficiency. The present work provides new insights into the molecular mechanisms of GSLs biosynthesis underlying glutathione regulation.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2021JC0009)the Natural Science Foundation of China(Grant Nos.U2142212 and 42105136)。
文摘Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.
文摘The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.
基金The National Key Research and Development Program of China under contract Nos 2022YFC3104804,2021YFC3101501,and 2017YFC1404103the National Programme on Global Change and Air-Sea Interaction of China under contract No.GASI-IPOVAI-04the National Natural Science Foundation of China under contract Nos 41876014,41606039,and 11801402.
文摘An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection term,the discrete method needs to be chosen very carefully.The finite analytic method is an alternative scheme to solve the advection-diffusion equation.As a combination of analytical and numerical methods,it not only has high calculation accuracy but also holds the characteristic of the auto upwind.To demonstrate its ability,the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method.The more widely used upwind difference method is used as a control approach.The result indicates that the finite analytic method has higher accuracy than the upwind difference method.For the two-dimensional case,the finite analytic method still has a better performance.In the three-dimensional variational assimilation experiment,the finite analytic method can effectively improve analysis field accuracy,and its effect is significantly better than the upwind difference and the central difference method.Moreover,it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.
基金Supported by National High-tech R & D Program of China (863 Program)(2007AA12Z174)~~
文摘Biomass from SAR data was assimilated into crop growth model to describe relationship between crop biomass and crop growth time to improve estimation accuracy of biomass. In addition, inverse model was established in order to estimate biomass according to relationship between biomass and backscattering coefficients from SAR data. Based on cost function, parameters of growth model were optimized as per conjugate gradient method, minimizing the differences between estimated biomass and inversion values from SAR data. The results indicated that the simulated biomass using the revised growth model with SAR data was consistent with the measured one in time distribution and even higher in accuracy than that without SAR data. Hence, the key parameters of crop growth model could be revised by real-time growth information from SAR data and accuracy of the simulated biomass could be improved accordingly.
基金supported by the National Science Foundation of China (40775023)the Science Foundation for Doctor of the Institute of Meteorology of PLA University of Sci.and Tech
文摘For the prediction of ENSO, the accuracy of the model including the parameters, initial value and others of the model is important, which can be retrieved by the variational data assimilation methods developed in recent years. However, when the nonlinearity of the model is quite strong, the effect of the improvement made by the 4-D variational data assimilation may be poor due to the bad approximation of the tangent linear model to the original model. So in the paper the ideas in the optimal control is introduced to improve the effect of 4-DVAR in the inversion of the parameters of a nonlinear dynamic ENSO model. The results indicate that when the terminal controlling term is added to the cost functional of 4DVAR, which originated from the optimal control, the effect of the inversion may be largely improved comparing to the traditional 4DVAR, as can be especially obvious from the phase orbit of the model variables. The results in the paper also suggest that the method of 4DVAR in combination with optimal control cannot only reduce the error resulting from the inaccuracy of the model parameters but also can correct the parameters itself. This gives a good method in modifying the model and improving the quality of prediction of ENSO.
基金sponsored by the U.S. National Science Foundation (Grant No.ATM0205599)the U.S. Offce of Navy Research under Grant N000140410471Dr. James A. Hansen was partially supported by US Offce of Naval Research (Grant No. N00014-06-1-0500)
文摘This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金partially supported by the JPSS PGRR science program(NA15NES4320001)the NOAA Joint Technology Transfer Initiative(NA19OAR4590240)at CIMSS/University of Wisconsin-Madison。
文摘Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmospheric analysis/reanalysis.This paper reviews the development of satellite IR data assimilation in NWP in recent years,especially the assimilation of all-sky satellite IR observations.The major challenges and future directions are outlined and discussed.
基金National Key R&D Program of China(2017YFC1502102,2018YFC1506802)National Natural Science Foundation of China(41675102)。
文摘Aircraft Meteorological Data Relay(AMDAR)observations have been widely used in numerical weather prediction(NWP)because of its high spatiotemporal resolution.The observational error of AMDAR is influenced by aircraft flight altitude and atmospheric condition.In this study,the wind speed and altitude dependent observational error of AMDAR is estimated.The statistical results show that the temperature and the observational error in wind speeds slightly decrease as altitude increases,and the observational error in wind speed increases as wind speed increases.Pseudo single AMDAR observation assimilation tests demonstrate that the wind speed and altitude dependent observational error can provide more reasonable analysis increment.Furthermore,to assess the performance of wind speed and altitude dependent observational error on data assimilation and forecasting,two-month 3-hourly cycling data assimilation and forecast experiments based on the Weather Research and Forecasting Model(WRF)and its Data Assimilation system(WRFDA)are performed for the period during 1 September-31 October,2017.The results of the two-month 3-hourly cycling experiments indicate that new observational error improves analysis and forecast of wind field and geo-potential height,and has slight improvements on temperature.The Fractions Skill Score(FSS)of the 6-h accumulated precipitation shows that new wind speed and altitude dependent observational error leads to better precipitation forecast skill than the default observational error in the WRFDA does.
文摘A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A two-dimensional variation assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analyses fields based on T213 results and routine observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are also carried out, which correspond respectively to the initialization scheme with two-dimensional variation (2D - Var), three-dimensional observational nudging and direct assimilation of satellite data. It is found that, comparing with the experiments without satellite data assimilation, the first two assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce by 18 % at 12 h for 2D - Var and from about 16 % at 24 h to about 35 % at 48 h for observational nudging. The simulated results based on assimilating different kinds of satellite data are also compared.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41475094 and 41375113)
文摘The tangent linear(TL) models and adjoint(AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great efforts, either by hand, or by automatic differentiation tools. In order to break these limitations, a new data assimilation system, dual-number data assimilation system(DNDAS), is designed based on the dual-number automatic differentiation principles. We investigate the performance of DNDAS with two different optimization schemes and subsequently give a discussion on whether DNDAS is appropriate for high-dimensional forecast models. The new data assimilation system can avoid the complicated reverse integration of the adjoint model, and it only needs the forward integration in the dual-number space to obtain the cost function and its gradient vector concurrently. To verify the correctness and effectiveness of DNDAS, we implemented DNDAS on a simple ordinary differential model and the Lorenz-63 model with different optimization methods. We then concentrate on the adaptability of DNDAS to the Lorenz-96 model with high-dimensional state variables. The results indicate that whether the system is simple or nonlinear, DNDAS can accurately reconstruct the initial condition for the forecast model and has a strong anti-noise characteristic. Given adequate computing resource, the quasi-Newton optimization method performs better than the conjugate gradient method in DNDAS.
基金the National Basic Research Program (973 Program) (No.2010CB 951604)the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (meteorology) [Grant No. GYHY(QX)200906009]+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2010AA012304)the LASG free exploration fund
文摘Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.
文摘Advancements in uncrewed aircrafts and communications technologies have led to a wave of interest and investment in unmanned aircraft systems(UASs)and urban air mobility(UAM)vehicles over the past decade.To support this emerging aviation application,concepts for UAS/UAM traffic management(UTM)systems have been explored.Accurately characterizing and predicting the microscale weather conditions,winds in particular,will be critical to safe and efficient operations of the small UASs/UAM aircrafts within the UTM.This study implements a reduced order data assimilation approach to reduce discrepancies between the predicted urban wind speed with computational fluid dynamics(CFD)Reynolds-averaged Navier Stokes(RANS)model with real-world,limited and sparse observations.The developed data assimilation system is UrbanDA.These observations are simulated using a large eddy simulation(LES).The data assimilation approach is based on the time-independent variational framework and uses space reduction to reduce the memory cost of the process.This approach leads to error reduction throughout the simulated domain and the reconstructed field is different than the initial guess by ingesting wind speeds at sensor locations and hence taking into account flow unsteadiness in a time when only the mean flow quantities are resolved.Different locations where wind sensors can be installed are discussed in terms of their impact on the resulting wind field.It is shown that near-wall locations,near turbulence generation areas with high wind speeds have the highest impact.Approximating the model error with its principal mode provides a better agreement with the truth and the hazardous areas for UAS navigation increases by more than 10%as wind hazards resulting from buildings wakes are better simulated through this process.
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390082 and 40471074)
文摘The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.