Schisandrae Fructus, containing schisandrin B (Sch B) as its main active component, is recognized in traditional Chinese medicine (TCM) for its Qi-invigorating properties in the five visceral organs. Our laboratory ha...Schisandrae Fructus, containing schisandrin B (Sch B) as its main active component, is recognized in traditional Chinese medicine (TCM) for its Qi-invigorating properties in the five visceral organs. Our laboratory has shown that the Qi-invigorating action of Chinese tonifying herbs is linked to increased mitochondrial ATP generation and an enhancement in mitochondrial glutathione redox status. To explore whether Sch B can exert Qi-invigorating actions across various tissues, we investigated the effects of Sch B treatment on mitochondrial ATP generation and glutathione redox status in multiple mouse tissues ex vivo. In line with TCM theory, which posits that Zheng Qi generation relies on the Qi function of the visceral organs, we also examined Sch B’s impact on natural killer cell activity and antigen-induced splenocyte proliferation, both serving as indirect measures of Zheng Qi. Our findings revealed that Sch B treatment consistently enhanced mitochondrial ATP generation and improved mitochondrial glutathione redox status in mouse tissues. This boost in mitochondrial function was associated with stimulated innate and adaptive immune responses, marked by increased natural killer cell activity and antigen-induced T/B cell proliferation, potentially through the increased generation of Zheng Qi.展开更多
<span style="font-family:Verdana;">In the present study, two cell-based systems for assessing Yang and Yin activities were for the first time used to investigate the effect of ursolic acid (UA) and ole...<span style="font-family:Verdana;">In the present study, two cell-based systems for assessing Yang and Yin activities were for the first time used to investigate the effect of ursolic acid (UA) and oleanolic acid (OA). The results indicated that while UA was only active in the Yang assay, OA produced activity in the Yin assay. The Yang/Yin activity of UA/OA may be attributed to their distinct molecular structures, which confer their differential ability to interact with mitochondrial membrane or cellular membrane lipids, with resultant membrane fluidization and potentiation of biological responses.</span>展开更多
文摘Schisandrae Fructus, containing schisandrin B (Sch B) as its main active component, is recognized in traditional Chinese medicine (TCM) for its Qi-invigorating properties in the five visceral organs. Our laboratory has shown that the Qi-invigorating action of Chinese tonifying herbs is linked to increased mitochondrial ATP generation and an enhancement in mitochondrial glutathione redox status. To explore whether Sch B can exert Qi-invigorating actions across various tissues, we investigated the effects of Sch B treatment on mitochondrial ATP generation and glutathione redox status in multiple mouse tissues ex vivo. In line with TCM theory, which posits that Zheng Qi generation relies on the Qi function of the visceral organs, we also examined Sch B’s impact on natural killer cell activity and antigen-induced splenocyte proliferation, both serving as indirect measures of Zheng Qi. Our findings revealed that Sch B treatment consistently enhanced mitochondrial ATP generation and improved mitochondrial glutathione redox status in mouse tissues. This boost in mitochondrial function was associated with stimulated innate and adaptive immune responses, marked by increased natural killer cell activity and antigen-induced T/B cell proliferation, potentially through the increased generation of Zheng Qi.
文摘<span style="font-family:Verdana;">In the present study, two cell-based systems for assessing Yang and Yin activities were for the first time used to investigate the effect of ursolic acid (UA) and oleanolic acid (OA). The results indicated that while UA was only active in the Yang assay, OA produced activity in the Yin assay. The Yang/Yin activity of UA/OA may be attributed to their distinct molecular structures, which confer their differential ability to interact with mitochondrial membrane or cellular membrane lipids, with resultant membrane fluidization and potentiation of biological responses.</span>