In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distri...In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distribution of Mg 17 Al 12(β-phase)was analyzed under the optical microscope.Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time,which can be attributed to the solid solution strengthening.The influence of super saturatedα-grains on reducing the cutting force(F z)with respect to increased cutting speed was observed as prominent.The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests.Surprisingly,corrosion rate of heat treated samples was observed as increased compared with the base material.From the results,it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturatedα-grains through heat treatment but at the cost of losing corrosion resistance.展开更多
This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer...This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.展开更多
A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casti...A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed.展开更多
In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coa...In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coating on Mg alloy AZ91D, the process of copper transition coating plated in the cyanides bath can be replaced. A new bath composed of NiSO4 was established by orthogonal test. The results show that zinc transition coating can increase the adhesion and protect the Mg alloy substrate from the bath corrosion. The optimal plating bath composition is NiSO4·6H2O 20 g/L, NaH2PO2·H2O20g/L and C6H8O7·H2O 2.5 g/L, and optimal bath acidity and optimal plating temperature are pH 4.0 and 95℃, respectively. The present process flow is composed of ultrasonic cleaning→alkaline cleaning→acid pickling→activation→double immersing zinc→electroplating zinc→electroless nickel plating→passivation treatment. The present non-cyanide process of electroless nickel plating is harmless to our surroundings and Ni-P coating on Mg alloy AZ91D produced by present process possesses good adhesion and corrosion resistance.展开更多
Three types of laminates were designed by alternately stacking AZ91 extruded sheets in different states for extrusion to improve the mechanical properties.The tensile tests revealed that the combination of solid-solut...Three types of laminates were designed by alternately stacking AZ91 extruded sheets in different states for extrusion to improve the mechanical properties.The tensile tests revealed that the combination of solid-solution-treated sheets with the aging-treated sheets achieved high tensile strength and ductility,i.e.,ultimate tensile strength of~386 MPa and elongation of~19.8%,respectively.Electron backscatter diffraction(EBSD)and TEM results indicated that the aging-treated layers with more nano-sized precipitates and small grain size provided high strength and reasonable ductility,while the solid-solution-treated layers with low dislocation density facilitated strain hardening.Also,the strong interface bonding between the successive layers played an important role in the enhanced ductility.展开更多
文摘In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distribution of Mg 17 Al 12(β-phase)was analyzed under the optical microscope.Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time,which can be attributed to the solid solution strengthening.The influence of super saturatedα-grains on reducing the cutting force(F z)with respect to increased cutting speed was observed as prominent.The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests.Surprisingly,corrosion rate of heat treated samples was observed as increased compared with the base material.From the results,it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturatedα-grains through heat treatment but at the cost of losing corrosion resistance.
基金funded by China Postdoctoral Science Foundation(No.2021M700569)Chongqing Postdoctoral Science Foundation(No.7 cstc2021jcyj-bshX0087)。
文摘This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.
基金Project(2008T142) supported by the Innovation Team Program of Liaoning Provincial Department of Education of China
文摘A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed.
文摘In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coating on Mg alloy AZ91D, the process of copper transition coating plated in the cyanides bath can be replaced. A new bath composed of NiSO4 was established by orthogonal test. The results show that zinc transition coating can increase the adhesion and protect the Mg alloy substrate from the bath corrosion. The optimal plating bath composition is NiSO4·6H2O 20 g/L, NaH2PO2·H2O20g/L and C6H8O7·H2O 2.5 g/L, and optimal bath acidity and optimal plating temperature are pH 4.0 and 95℃, respectively. The present process flow is composed of ultrasonic cleaning→alkaline cleaning→acid pickling→activation→double immersing zinc→electroplating zinc→electroless nickel plating→passivation treatment. The present non-cyanide process of electroless nickel plating is harmless to our surroundings and Ni-P coating on Mg alloy AZ91D produced by present process possesses good adhesion and corrosion resistance.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.52071035,U1764253).
文摘Three types of laminates were designed by alternately stacking AZ91 extruded sheets in different states for extrusion to improve the mechanical properties.The tensile tests revealed that the combination of solid-solution-treated sheets with the aging-treated sheets achieved high tensile strength and ductility,i.e.,ultimate tensile strength of~386 MPa and elongation of~19.8%,respectively.Electron backscatter diffraction(EBSD)and TEM results indicated that the aging-treated layers with more nano-sized precipitates and small grain size provided high strength and reasonable ductility,while the solid-solution-treated layers with low dislocation density facilitated strain hardening.Also,the strong interface bonding between the successive layers played an important role in the enhanced ductility.