期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical Solution of Generalized Abel’s Integral Equation by Variational Iteration Method
1
作者 R. N. Prajapati Rakesh Mohan Pankaj Kumar 《American Journal of Computational Mathematics》 2012年第4期312-315,共4页
In this paper, a user friendly algorithm based on the variational iteration method (VIM) is proposed to solve singular integral equations with generalized Abel’s kernel. It is observed that an approximate solutions y... In this paper, a user friendly algorithm based on the variational iteration method (VIM) is proposed to solve singular integral equations with generalized Abel’s kernel. It is observed that an approximate solutions yn(x) converges to the exact solution irrespective of the initial choice y0 (x). Illustrative numerical examples are given to demonstrate the efficiency and simplicity of the method in solving these types of singular integral equations. 展开更多
关键词 VARIATIONAL ITERATION Method sINGULAR Integral Equation abel’s KERNEL
下载PDF
Identities on q-Harmonic Numbers
2
作者 Mengxiao Zhou Haitao Jin Huanhuan Zheng 《Journal of Applied Mathematics and Physics》 2024年第5期1796-1803,共8页
With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harm... With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harmonic numbers. This enables us to construct and prove identities on q-harmonic numbers. Several examples are also given. 展开更多
关键词 Harmonic Numbers q-Zeilberger Algorithm abel’s Lemma
下载PDF
Abel’s lemma on summation by parts and partial q-series transformations 被引量:1
3
作者 CHU WenChang WANG ChenYing 《Science China Mathematics》 SCIE 2009年第4期720-748,共29页
The partial sums of basic hypergeometric series are investigated by means of the modified Abel lemma on summation by parts. Several transformation and summation formulae for well-poised, quadratic, cubic and quartic q... The partial sums of basic hypergeometric series are investigated by means of the modified Abel lemma on summation by parts. Several transformation and summation formulae for well-poised, quadratic, cubic and quartic q-series are established. 展开更多
关键词 abel’s lemma on summation by parts basic hypergeometric series well-poised series quadratic series cubic series quartic series reciprocal relation 33D15 05A15
原文传递
A New Understanding on the Problem That the Quintic Equation Has No Radical Solutions
4
作者 Xiaochun Mei 《Advances in Pure Mathematics》 2020年第9期508-539,共32页
It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted t... It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted that general quintic equations had no radical solutions. However, Tang Jianer <i><span style="font-family:Verdana;font-size:12px;">et</span></i><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> recently prove that there are radical solutions for some quintic equations with special forms. The theories of Abel and Galois cannot explain these results. On the other hand, Gauss </span><i><span style="font-family:Verdana;font-size:12px;">et</span></i></span><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> proved the fundamental theorem of algebra. The theorem declared that there were </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> solutions for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree equations, including the radical and non-radical solutions. The theories of Abel and Galois contradicted with the fundamental theorem of algebra. Due to the reasons above, the proofs of Abel and Galois should be re-examined and re-evaluated. The author carefully analyzed the Abel’s original paper and found some serious mistakes. In order to prove that the general solution of algebraic equation</span></span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">he proposed was effective for the cubic equation, Abel took the known solutions of cubic equation as a premise to calculate the parameters of his equation. Therefore, Abel’s proof is a logical circular argument and invalid. Besides, Abel confused the variables with the coefficients (constants) of algebraic equations. An expansion with 14 terms was written as 7 terms, 7 terms were missing.</span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">We prefer to consider Galois’s theory as a hypothesis rather than a proof. Based on that permutation group </span><i><span style="font-size:12px;font-family:Verdana;">S</span></i><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-size:12px;font-family:Verdana;"> had no true normal subgroup, Galois concluded that the quintic equations had no radical solutions, but these two problems had no inevitable logic connection actually. In order to prove the effectiveness of radical extension group of automorphism mapping for the cubic and quartic equations, in the Galois’s theory, some algebraic relations among the roots of equations were used to replace the root itself. This violated the original definition of automorphism mapping group, led to the confusion of concepts and arbitrariness. For the general cubic and quartic algebraic equations, the actual solving processes do not satisfy the tower structure of Galois’s solvable group. The resolvents of cubic and quartic equations are proved to have no symmetries of Galois’s soluble group actually. It is invalid to use the solvable group theory to judge whether the high degree equation has a radical solution. The conclusion of this paper is that there is only the </span><i><span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;">S</span><sub><span style="font-family:Verdana;font-size:12px;">n</span></sub></span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> symmetry for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree algebraic equations. The symmetry of Galois’s solvable group does not exist. Mathematicians should get rid of the constraints of Abel and Galois’s theories, keep looking for the radical solutions of high degree equations.</span></span> 展开更多
关键词 Quintic Equation Gauss Basic Theorem of Algebra Radical solution abel’s Theory Galois’s Theory solvable Group Lagrange’s Resolvents
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部