期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN
1
作者 Imtiaz Ahmad Tariq Hussain +3 位作者 Babar Shah Altaf Hussain Iqtidar Ali Farman Ali 《Computers, Materials & Continua》 SCIE EI 2024年第6期3585-3629,共45页
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe... Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks. 展开更多
关键词 Wireless sensor network cluster head selection low energy adaptive clustering hierarchy accelerated particle swarm optimization
下载PDF
Lifetime prediction for tantalum capacitors with multiple degradation measures and particle swarm optimization based grey model 被引量:2
2
作者 黄姣英 高成 +1 位作者 崔嵬 梅亮 《Journal of Central South University》 SCIE EI CAS 2012年第5期1302-1310,共9页
A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter mode... A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter model based on GM was developed. In order to improve the prediction accuracy of the two-parameter model, parameter selection based on particle swarm optimization (PSO) was used. Then, the new PSO-GM(1, 2, co) optimization model was constructed, which was validated experimentally by conducting an accelerated testing on the Ta capacitors. The experiments were conducted at three different stress levels of 85, 120, and 145℃. The results of two experiments were used in estimating the parameters. And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment. The results indicate that the proposed method is valid and accurate. 展开更多
关键词 accelerated degradation test CAPACITOR multiple degradation measure particle swarm optimization grey model
下载PDF
Integrating Tabu Search in Particle Swarm Optimization for the Frequency Assignment Problem 被引量:1
3
作者 Houssem Eddine Hadji Malika Babes 《China Communications》 SCIE CSCD 2016年第3期137-155,共19页
In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency s... In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution. 展开更多
关键词 frequency assignment problem particle swarm optimization tabu search convergence acceleration
下载PDF
Optimal Power Flow Solution Using Particle Swarm Optimization Technique with Global-Local Best Parameters 被引量:4
4
作者 P. Umapathy C. Venkatasehsiah M. Senthil Arumugam 《Journal of Energy and Power Engineering》 2010年第2期46-51,共6页
This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ... This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques. 展开更多
关键词 particle swarm optimization swarm intelligence optimal power flow solution inertia weight acceleration coefficient.
下载PDF
Adaptive Multi-Updating Strategy Based Particle Swarm Optimization
5
作者 Dongping Tian Bingchun Li +3 位作者 Jing Liu Chen Liu Ling Yuan Zhongzhi Shi 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2783-2807,共25页
Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers fr... Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems.Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization(abbreviated as AMS-PSO).To start with,the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO.Subsequently,according to the current iteration,different update schemes are used to regulate the particle search process at different evolution stages.To be specific,two different sets of velocity update strategies are utilized to enhance the exploration ability in the early evolution stage while the other two sets of velocity update schemes are applied to improve the exploitation capability in the later evolution stage.Followed by the unequal weightage of acceleration coefficients is used to guide the search for the global worst particle to enhance the swarm diversity.In addition,an auxiliary update strategy is exclusively leveraged to the global best particle for the purpose of ensuring the convergence of the PSO method.Finally,extensive experiments on two sets of well-known benchmark functions bear out that AMS-PSO outperforms several state-of-the-art PSOs in terms of solution accuracy and convergence rate. 展开更多
关键词 particle swarm optimization local optima acceleration coefficients swarm diversity premature convergence
下载PDF
Optimal Scheduling of Cascaded Hydrothermal Systems Using a New Improved Particle Swarm Optimization Technique
6
作者 Kamal K. Mandal Niladri Chakraborty 《Smart Grid and Renewable Energy》 2011年第3期282-292,共11页
Optimum scheduling of hydrothermal plants generation is of great importance to electric utilities. Many evolutionary techniques such as particle swarm optimization, differential evolution have been applied to solve th... Optimum scheduling of hydrothermal plants generation is of great importance to electric utilities. Many evolutionary techniques such as particle swarm optimization, differential evolution have been applied to solve these problems and found to perform in a better way in comparison with conventional optimization methods. But often these methods converge to a sub-optimal solution prematurely. This paper presents a new improved particle swarm optimization technique called self-organizing hierarchical particle swarm optimization technique with time-varying acceleration coefficients (SOHPSO_TVAC) for solving short-term economic generation scheduling of hydrothermal systems to avoid premature convergence. A multi-reservoir cascaded hydrothermal system with nonlinear relationship between water discharge rate, power generation and net head is considered here. The performance of the proposed method is demonstrated on two test systems comprising of hydro and thermal units. The results obtained by the proposed methods are compared with other methods. The results show that the proposed technique is capable of producing better results. 展开更多
关键词 HYDROTHERMAL Systems Cascaded RESERVOIRS SELF-ORGANIZING Hierarchical particle swarm optimization with TIME-VARYING Acceleration COEFFICIENTS (SOHPSO_TVAC)
下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法
7
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布熵 信号降噪
下载PDF
Acceleration Factor Harmonious Particle Swarm Optimizer 被引量:2
8
作者 Jie Chen Feng Pan Tao Cai 《International Journal of Automation and computing》 EI 2006年第1期41-46,共6页
A Particle Swarm Optimizer (PSO) exhibits good performance for optimization problems, although it cannot guarantee convergence to a global, or even local minimum. However, there are some adjustable parameters, and r... A Particle Swarm Optimizer (PSO) exhibits good performance for optimization problems, although it cannot guarantee convergence to a global, or even local minimum. However, there are some adjustable parameters, and restrictive conditions, which can affect the performance of the algorithm. In this paper, the sufficient conditions for the asymptotic stability of an acceleration factor and inertia weight are deduced, the value of the inertia weight w is enhanced to ( 1, 1). Furthermore a new adaptive PSO algorithm - Acceleration Factor Harmonious PSO (AFHPSO) is proposed, and is proved to be a global search algorithm. AFHPSO is used for the parameter design of a fuzzy controller for a linear motor driving servo system. The performance of the nonlinear model for the servo system demonstrates the effectiveness of the optimized fuzzy controller and AFHPSO. 展开更多
关键词 particle swarm optimizer acceleration factor harmonious PSO asymptotic stability global convergence fuzzy control.
下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
9
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子群优化(apso)算法 反向传播神经网络(BPNN) 腐蚀速率 预测模型
下载PDF
基于APSO-BP神经网络的末敏弹作战效能评估方法
10
作者 唐永果 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第10期100-106,共7页
针对末敏弹结构复杂、影响因素多、作战效能分析困难等问题,以末敏弹命中概率作为目标函数,建立了作战效能评估指标体系,提出了一种基于APSO-BP神经网络的作战效能评估模型,并构建了BP神经网络和PSO-BP神经网络2种对比模型,利用MATLAB... 针对末敏弹结构复杂、影响因素多、作战效能分析困难等问题,以末敏弹命中概率作为目标函数,建立了作战效能评估指标体系,提出了一种基于APSO-BP神经网络的作战效能评估模型,并构建了BP神经网络和PSO-BP神经网络2种对比模型,利用MATLAB工具对3种模型进行了仿真分析。结果显示,APSO-BP神经网络的运行耗时为0.6513 s,均方误差为0.0032,相关系数为0.9789;PSO-BP神经网络的运行耗时为2.0154 s,均方误差为0.0075,相关系数为0.9688;BP神经网络的运行耗时为14.1375 s,均方误差为0.0159,相关系数为0.8900。APSO-BP神经网络评估模型运行耗时更短,预测精度更高,对于末敏弹的作战运用具有重要的理论意义和现实价值。 展开更多
关键词 末敏弹 命中概率 效能评估 BP神经网络 粒子群算法 apso-BP算法
下载PDF
SA-APSO算法及其在变压器油中局部放电超声定位中的应用 被引量:9
11
作者 徐艳春 王泉 +2 位作者 李振兴 李振华 吕密 《高压电器》 CAS CSCD 北大核心 2018年第12期143-149,共7页
针对基本粒子群算法(particle swarm optimization algorithm,PSO)局部寻优能力差及易早熟收敛的情况,提出一种融入模拟退火思路的自适应粒子群混合算法(simulated annealing-adaptive particle swarmoptimization algorithm,SA-APSO),... 针对基本粒子群算法(particle swarm optimization algorithm,PSO)局部寻优能力差及易早熟收敛的情况,提出一种融入模拟退火思路的自适应粒子群混合算法(simulated annealing-adaptive particle swarmoptimization algorithm,SA-APSO),在惯性权重变化-自适应粒子群基础上融入退火思想,以一定的随机概率接收最优值,能有效提升全局寻优能力并克服早熟收敛现象。利用测试函数进行的仿真结果表明SA-APSO算法在结果精度及稳定度上明显优于基本PSO。并将其应用于变压器油中局部放电的定位计算,将结果与基本PSO及自适应粒子群进行比较,结果表明基于SA-APSO的变压器油中局部放电超声定位方法能够实现全局精确定位,且结果稳定,综合误差小于3.7 mm。 展开更多
关键词 粒子群算法 SA—apso算法 变压器 局部放电 超声波 定位
下载PDF
基于GPR代理模型和GA-APSO混合优化算法的软基水闸底板脱空反演 被引量:4
12
作者 李火坤 柯贤勇 +3 位作者 黄伟 刘双平 唐义员 方静 《振动与冲击》 EI CSCD 北大核心 2023年第14期1-10,29,共11页
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自... 软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。 展开更多
关键词 软基水闸 底板脱空反演 动力学方法 高斯过程回归(GPR)代理模型 遗传-自适应惯性权重粒子群(GA-apso)混合优化算法
下载PDF
基于APSO算法的双容水箱PID参数优化仿真 被引量:12
13
作者 宋栓军 陈凯凯 张华威 《计算机仿真》 北大核心 2018年第8期261-265,共5页
针对双容水箱液位控制系统中PID参数整定困难的问题,采用一种自适应的粒子群(APSO)算法来优化双容水箱液位控制系统中的PID参数。上述算法将PID的三个参数Kp、Ki、Kd作为粒子的三个维度,采用目标函数值自适应的惯性权重系数调整策略,结... 针对双容水箱液位控制系统中PID参数整定困难的问题,采用一种自适应的粒子群(APSO)算法来优化双容水箱液位控制系统中的PID参数。上述算法将PID的三个参数Kp、Ki、Kd作为粒子的三个维度,采用目标函数值自适应的惯性权重系数调整策略,结合德普施双容水箱液位控制系统进行仿真。通过仿真得到:APSO算法比常规PSO算法具有更好的控制品质,即超调量明显减少、调整过程稳定。实验结果表明,APSO算法能够在液位控制中获得良好的动态性能,具有重要的实用价值。 展开更多
关键词 液位控制 自适应粒子群算法 参数 惯性权重
下载PDF
多特征和APSO-QNN相结合的语音端点检测算法 被引量:4
14
作者 董胡 《探测与控制学报》 CSCD 北大核心 2017年第4期90-95,共6页
针对传统端点检测算法在多种复杂噪声环境下端点检测正确率低、鲁棒性较弱的问题,提出多特征和加速粒子群优化量子神经网络(APSO-QNN)相结合的端点检测算法。该算法通过提取语音信号的短时能量特征、循环平均幅度差函数特征、频带方差... 针对传统端点检测算法在多种复杂噪声环境下端点检测正确率低、鲁棒性较弱的问题,提出多特征和加速粒子群优化量子神经网络(APSO-QNN)相结合的端点检测算法。该算法通过提取语音信号的短时能量特征、循环平均幅度差函数特征、频带方差特征及美尔频率倒谱系数特征,将这些特征量输入量子神经网络(QNN)进行学习并利用加速粒子群算法对量子神经网络参数进行优化,构建语音端点检测模型,实现对信号的类型的判别。仿真实验结果表明,该方法不仅提升了语音端点检测的正确率,而且降低了虚检率与漏检率,具有较强的抗噪鲁棒性。 展开更多
关键词 端点检测 加速粒子群优化 量子神经网络 正确率 鲁棒性
下载PDF
基于KPCA-APSO-LSSVM的充填管道磨损风险预测 被引量:5
15
作者 骆正山 黄仁惠 《有色金属工程》 CAS 北大核心 2021年第3期96-106,共11页
为提高充填管道磨损风险的预测精度,构建基于核主成分分析(KPCA)和自适应粒子群算法(APSO)优化的最小二乘支持向量机(LSSVM)磨损风险预测模型。首先通过KPCA对数据进行特征提取和降维处理,获取影响管道磨损的主要因素,然后应用LSSVM建... 为提高充填管道磨损风险的预测精度,构建基于核主成分分析(KPCA)和自适应粒子群算法(APSO)优化的最小二乘支持向量机(LSSVM)磨损风险预测模型。首先通过KPCA对数据进行特征提取和降维处理,获取影响管道磨损的主要因素,然后应用LSSVM建立磨损风险预测模型,同时利用APSO算法对模型参数进行优化。最后,以黄陵县矿区为例,分析选取12种影响因素,建立充填管道磨损风险指标体系,借助MATLAB进行仿真训练与预测,并对预测结果进行对比分析。结果表明:KPCA-APSO-LSSVM模型与其他模型相比具有更高的预测精度及更强的泛化能力,是一种更为有效的磨损风险预测方法。 展开更多
关键词 核主成分分析(KPCA) 自适应粒子群算法(apso) 最小二乘支持向量机(LSSVM) 管道磨损风险
下载PDF
基于VDM与APSO优化极限学习机的船舶运动姿态预报 被引量:3
16
作者 孙珽 徐东星 +3 位作者 尹勇 张秀凤 苌占星 叶进 《船舶工程》 CSCD 北大核心 2019年第11期89-97,共9页
为提高船舶在海上运动的耐波性与适航性,并为解决具有非线性、随机性和非平稳性特点的船舶运动姿态难以准确预测的问题,提出运用一种基于变分模态分解和自适应粒子群算法优化极限学习机的组合预测模型。该算法首先利用变分模态分解将船... 为提高船舶在海上运动的耐波性与适航性,并为解决具有非线性、随机性和非平稳性特点的船舶运动姿态难以准确预测的问题,提出运用一种基于变分模态分解和自适应粒子群算法优化极限学习机的组合预测模型。该算法首先利用变分模态分解将船舶运动姿态序列分解为一系列限带内本征模态函数,并且变分模态分解可以避免经验模态分解技术所产生的模态混叠和端点效应,可以降低序列的非平稳性对预测精度的影响;然后对各模态分量分别建立极限学习机预测模型,并用改进的粒子群算法对极限学习机的初始权值和阈值进行优化;最后将各模态分量预测结果进行叠加,得到最终的船舶运动姿态预测值。通过模拟试验测试并与其他传统的预测方法进行比较,结果表明所建立的组合预测模型具有更高的预测精度。 展开更多
关键词 船舶姿态预报 变分模态分解 自适应粒子群算法 极限学习机
下载PDF
基于APSO__WLSSVM算法的Hammerstein ARMAX模型参数辨识 被引量:3
17
作者 郭伟 李明家 +2 位作者 李涛 乔东东 魏妙 《中国科技论文》 CAS 北大核心 2018年第2期136-142,共7页
提出了一种新的使用粒子群算法改进最小二乘支持向量机(adaptive particle swarm optimization,APSO-WLSSVM)的复合算法,应用进化状态估计技术和变异操作改进粒子群算法,使得算法快速收敛于优化目标,具有良好的辨识效果。将所提出的方... 提出了一种新的使用粒子群算法改进最小二乘支持向量机(adaptive particle swarm optimization,APSO-WLSSVM)的复合算法,应用进化状态估计技术和变异操作改进粒子群算法,使得算法快速收敛于优化目标,具有良好的辨识效果。将所提出的方法与鲁棒最小二成向量机、最小二成相量机方法进行数值例子比较研究,结果证明了所提出的APSO-WLSSVM方法的有效性。 展开更多
关键词 HAMMERSTEIN模型 鲁棒最小二成向量机 自适应粒子群混合鲁棒最小二成相量机 参数辨识 数值例子
下载PDF
基于变换域APSO的任意阵列宽带DOA估计算法 被引量:2
18
作者 刘学承 朱敏 武岩波 《信号处理》 CSCD 北大核心 2022年第6期1306-1315,共10页
为了提高宽带信号来波方向(Direction-of-arrival,DOA)估计精度并降低计算复杂度,本文结合已知的发射信号波形,提出了一种基于变换域加速粒子群最优化(Accelerated Particle Swarm Optimization,APSO)的宽带DOA估计算法,该算法适用于任... 为了提高宽带信号来波方向(Direction-of-arrival,DOA)估计精度并降低计算复杂度,本文结合已知的发射信号波形,提出了一种基于变换域加速粒子群最优化(Accelerated Particle Swarm Optimization,APSO)的宽带DOA估计算法,该算法适用于任意阵列和低采样率情况。首先对阵列接收数据进行匹配滤波以及傅里叶变换处理,其次根据频域宽带阵列数据模型,利用确定性极大似然(Deterministic Maximum Likelihood,DML)准则构建宽带DOA估计的空间谱函数,然后采用变换域APSO算法对空间谱函数进行最大值搜索,搜索结果即为DOA估计值。该算法无需DOA预估计,不依赖空间谱函数的梯度信息,计算复杂度低。仿真实验表明,所提算法具有高估计精度和低计算复杂度,在信噪比为20 dB时,DOA估计均方根误差为0.02°。 展开更多
关键词 来波方向估计 宽带信号 任意阵列 确定性极大似然 加速粒子群最优化 匹配滤波
下载PDF
基于APSO-SSVM的异步电动机转子故障诊断 被引量:2
19
作者 郭家豪 欧阳晖 刘振兴 《电机与控制应用》 2023年第10期91-99,共9页
基于信号分析的异步电动机的转子断条与偏心故障诊断方法中,常用传统的电机电流信号特征分析(MCSA)方法。由于采样频率偏低、强大的基波旁瓣效应等因素的影响,会导致特征频率成分被淹没、难以量化故障程度等问题。因此,提出了一种基于... 基于信号分析的异步电动机的转子断条与偏心故障诊断方法中,常用传统的电机电流信号特征分析(MCSA)方法。由于采样频率偏低、强大的基波旁瓣效应等因素的影响,会导致特征频率成分被淹没、难以量化故障程度等问题。因此,提出了一种基于自适应粒子群优化逐序支持向量机(APSO-SSVM)的异步电动机故障诊断方法。首先,利用经验小波变换(EWT)对原始信号进行滤波;然后,对滤波后的信号进行特征提取并输入到SSVM诊断模型中;最后,通过APSO算法确定各次序下SVM模型的最佳超参数,从而实现转子断条数量的精确故障诊断。 展开更多
关键词 异步电动机 经验小波变换(EWT)分解 特征提取 自适应粒子群优化逐序支持向量机(apso-SSVM) 故障诊断
下载PDF
基于APSO–WLS–SVM的含瓦斯煤渗透率预测模型 被引量:7
20
作者 毛志勇 黄春娟 +1 位作者 路世昌 韩榕月 《煤田地质与勘探》 CAS CSCD 北大核心 2019年第2期66-71,78,共7页
为了较准确预测含瓦斯煤渗透率,有效预防瓦斯安全事故,提出自适应粒子群算法(APSO)优化的加权最小二乘法支持向量机(WLS–SVM)算法。根据对含瓦斯煤渗透率的相关理论及文献研究分析,选取有效应力、瓦斯压力、温度和抗压强度作为主要特... 为了较准确预测含瓦斯煤渗透率,有效预防瓦斯安全事故,提出自适应粒子群算法(APSO)优化的加权最小二乘法支持向量机(WLS–SVM)算法。根据对含瓦斯煤渗透率的相关理论及文献研究分析,选取有效应力、瓦斯压力、温度和抗压强度作为主要特征指标,采用APSO算法对WLS–SVM模型的组合参数(C、σ)寻优,建立APSO–WLS–SVM含瓦斯煤渗透率预测模型。结合现场实测资料中的40组数据作为训练样本,其余10组为预测样本,对该模型进行训练与检验,并将其预测结果与利用PSO–WLS–SVM和WLS–SVM模型的预测结果进行对比。结果表明:APSO-WLS-SVM模型的预测效果优于另外2个模型,提高了煤体渗透率的预测性能与泛化能力。 展开更多
关键词 含瓦斯煤 渗透率 自适应粒子群算法(apso) 加权最小二乘法支持向量机(WLS-SVM)
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部