The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are...The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.展开更多
An adaptive fuzzy tracking control scheme is presented for a class of switched multi-input-multi-output (MIMO) nonlinear systems with disturbances under arbitrary switching. Adaptive fuzzy systems are employed to appr...An adaptive fuzzy tracking control scheme is presented for a class of switched multi-input-multi-output (MIMO) nonlinear systems with disturbances under arbitrary switching. Adaptive fuzzy systems are employed to approximate the unknown functions on line,and a systematic framework for adaptive fuzzy tracking controller design is given,where the dynamic surface control (DSC) approach is used to solve the problem of "explosion of complexity"in the backstepping design procedure. According to the common Lyapunov function theory,it is proved that the proposed controller can guarantee the boundedness of all signals in the closed loop system. Finally,the simulation results demonstrate the validity of the control approach.展开更多
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti...A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.展开更多
An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy ...An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network(NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.展开更多
This paper first researches the system's response-feature due to the sliding regime related to the slope of a switching line, and then makes an investigation on the existence condition and hitting condition. Based...This paper first researches the system's response-feature due to the sliding regime related to the slope of a switching line, and then makes an investigation on the existence condition and hitting condition. Based on these conditions, the paper proposes a switching function that can realize an error adaptive variable structure control (AVSC) successfully. For eliminating the chattering of the sliding regime, this VSS introduces a dead zone, in which the PID control is applied. The composition of the PID control and the AVSC is called composite control of linear / AVSC. When the control signal is a large one, the AVSC is applied in the majority, and when the signal is a low one, the PID control is applied. Finally, an example of overload control of an anti-ship aerodynamic missile is illustrated to show the application of the composite control.展开更多
Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 a...Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.展开更多
This article provides a flexible-joint-manipulator,which incorporates with three means to make its mechanical arm come into compliant contact with the objects with a force kept within an acceptable range. At first,the...This article provides a flexible-joint-manipulator,which incorporates with three means to make its mechanical arm come into compliant contact with the objects with a force kept within an acceptable range. At first,the Cartesian impedance control law is introduced on the basis of virtual decomposition to realize the compliance control. Then,adaptive dynamic joint compensators on all joints are used to achieve more precise control. Finally,a Cartesian force-feedback path generation is developed for collision ...展开更多
In recent years, networked distributed control systems(NDCS) have received research attention. Two of the main challenges that such systems face are possible delays in the communication network and the effect of str...In recent years, networked distributed control systems(NDCS) have received research attention. Two of the main challenges that such systems face are possible delays in the communication network and the effect of strong interconnections between agents. This paper considers an NDCS that has delays in the communication network, as well as strong interconnections between its agents. The control objective is to make each agent track efficiently a reference model by attenuating the effect of strong interconnections via feedback based on the delayed information. First, the authors assume that each agent knows its own dynamics, as well as the interconnection parameters, but receives information about the states of its neighbors with some communication delay. The authors propose a distributed control scheme and prove that if the interconnections can be weakened and if the communication delays are small enough, then the proposed scheme guarantees that the tracking error of each agent is bounded with a bound that depends on the size of the weakened interconnections and delays, and reduces to zero as these uncertainties reduce to zero. The authors then consider a more realistic situation where the interconnections between agents are unknown despite the cooperation and sharing of state information. For this case the authors propose a distributed adaptive control scheme and prove that the proposed scheme guarantees that the tracking errors are bounded and small in the mean square sense with respect to the size of the weakened interconnections and delays, provided the weakened interconnections and time delays are small enough. The authors then consider the case that each agent knows neither its dynamics nor the interconnection matrices. For this case the authors propose a distributed adaptive control scheme and prove that the proposed scheme guarantees that the tracking errors are bounded and small in the mean square sense provided the weakened interconnections and time delays are small enough. Finally, the authors present an illustrative example to present the applicability and effectiveness of the proposed schemes.展开更多
The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effecti...The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effectiveness of the adaptation,which ensures that the system has suffi-cient stability margins to achieve the desired performance under parametric uncertainty,additional delays,and actuator faults.The stability of the developed control system is demonstrated through a series of simulations.Compared with an existing control scheme,the constant adjustment of the sta-bility margins by the proposed adaptive scheme allows their range to be extended by a factor of 4–5,bringing the stability margin close to that of variable gain PD control with adaptively scheduled gains.The engineered practicability of adaptive technology is verified.A series of flight tests verify the practicability of the designed adaptive technology.The results of these tests demonstrate the enhanced performance of the proposed control scheme with nonlinear parameter estimations under insufficient stability margins and validate its robustness in the event of actuator failures.展开更多
Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the fin...Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.展开更多
This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compe...This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.展开更多
Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) ...Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.展开更多
A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical l...A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.展开更多
文摘The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.
基金supported in part by National Natural Science Foundation of China(61573108,61273192,61333013)the Ministry of Education of New Century Excellent Talent(NCET-12-0637)+1 种基金Natural Science Foundation of Guangdong Province through the Science Fund for Distinguished Young Scholars(S20120011437)Doctoral Fund of Ministry of Education of China(20124420130001)
基金Sponsored by the National Natural Science Foundation of China (Grant No.60974106,91116017 )the Aeronautical Science Fund (Grant No.20095152028)the Funding for Outstanding Doctoral Dissertation in NUAA (Grant No.BCXJ10-04)
文摘An adaptive fuzzy tracking control scheme is presented for a class of switched multi-input-multi-output (MIMO) nonlinear systems with disturbances under arbitrary switching. Adaptive fuzzy systems are employed to approximate the unknown functions on line,and a systematic framework for adaptive fuzzy tracking controller design is given,where the dynamic surface control (DSC) approach is used to solve the problem of "explosion of complexity"in the backstepping design procedure. According to the common Lyapunov function theory,it is proved that the proposed controller can guarantee the boundedness of all signals in the closed loop system. Finally,the simulation results demonstrate the validity of the control approach.
基金Supported by the National Nature Science Foundation of China (90716028)~~
文摘A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.
基金Supported by the National Natural Science Foundation of China(61333010,21376077,61203157)the Natural Science Foundation of Shanghai(14ZR1421800)State Key Laboratory of Synthetical Automation for Process Industries(PAL-N201404)
文摘An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network(NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.
文摘This paper first researches the system's response-feature due to the sliding regime related to the slope of a switching line, and then makes an investigation on the existence condition and hitting condition. Based on these conditions, the paper proposes a switching function that can realize an error adaptive variable structure control (AVSC) successfully. For eliminating the chattering of the sliding regime, this VSS introduces a dead zone, in which the PID control is applied. The composition of the PID control and the AVSC is called composite control of linear / AVSC. When the control signal is a large one, the AVSC is applied in the majority, and when the signal is a low one, the PID control is applied. Finally, an example of overload control of an anti-ship aerodynamic missile is illustrated to show the application of the composite control.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
基金supported by National Basic Research Program of China(973 Program)(2012CB720002)National High Technology Research and Development Program of China(863 Program)(2012AA120601)+2 种基金National Natural Science Foundation of China(61225015)the Ph.D.Programs Foundation of Ministry of Education of China(20111101110012)China Academy of Space Technology(CAST)Foundation(CAST201210)
基金co-supported by the National Science and Technology Major Project, China (No. J2019-Ⅰ-0010-0010)the Project funded by China Postdoctoral Science Foundation (No. 2021M701692)+3 种基金the Fundamental Research Funds for the Central Universities, China (No. NS2022029)the Postgraduate Research & Practice Innovation Program of NUAA, China (No. xcxjh20220206)the National Natural Science Foundation of China (No. 51976089)Jiangsu Funding Program for Excellent Postdoctoral Talent, China (No. 2022ZB202)。
文摘Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.
基金National Natural Science Foundation of China (60675054)National High Technology Research and Development Program of China (2006AA04Z228)"111" Project (B07018)
文摘This article provides a flexible-joint-manipulator,which incorporates with three means to make its mechanical arm come into compliant contact with the objects with a force kept within an acceptable range. At first,the Cartesian impedance control law is introduced on the basis of virtual decomposition to realize the compliance control. Then,adaptive dynamic joint compensators on all joints are used to achieve more precise control. Finally,a Cartesian force-feedback path generation is developed for collision ...
文摘In recent years, networked distributed control systems(NDCS) have received research attention. Two of the main challenges that such systems face are possible delays in the communication network and the effect of strong interconnections between agents. This paper considers an NDCS that has delays in the communication network, as well as strong interconnections between its agents. The control objective is to make each agent track efficiently a reference model by attenuating the effect of strong interconnections via feedback based on the delayed information. First, the authors assume that each agent knows its own dynamics, as well as the interconnection parameters, but receives information about the states of its neighbors with some communication delay. The authors propose a distributed control scheme and prove that if the interconnections can be weakened and if the communication delays are small enough, then the proposed scheme guarantees that the tracking error of each agent is bounded with a bound that depends on the size of the weakened interconnections and delays, and reduces to zero as these uncertainties reduce to zero. The authors then consider a more realistic situation where the interconnections between agents are unknown despite the cooperation and sharing of state information. For this case the authors propose a distributed adaptive control scheme and prove that the proposed scheme guarantees that the tracking errors are bounded and small in the mean square sense with respect to the size of the weakened interconnections and delays, provided the weakened interconnections and time delays are small enough. The authors then consider the case that each agent knows neither its dynamics nor the interconnection matrices. For this case the authors propose a distributed adaptive control scheme and prove that the proposed scheme guarantees that the tracking errors are bounded and small in the mean square sense provided the weakened interconnections and time delays are small enough. Finally, the authors present an illustrative example to present the applicability and effectiveness of the proposed schemes.
基金supported by the National Natural Science Foundation of China(No.U21B6003)the China Scholarship Council(CSC,No.202006310096).
文摘The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effectiveness of the adaptation,which ensures that the system has suffi-cient stability margins to achieve the desired performance under parametric uncertainty,additional delays,and actuator faults.The stability of the developed control system is demonstrated through a series of simulations.Compared with an existing control scheme,the constant adjustment of the sta-bility margins by the proposed adaptive scheme allows their range to be extended by a factor of 4–5,bringing the stability margin close to that of variable gain PD control with adaptively scheduled gains.The engineered practicability of adaptive technology is verified.A series of flight tests verify the practicability of the designed adaptive technology.The results of these tests demonstrate the enhanced performance of the proposed control scheme with nonlinear parameter estimations under insufficient stability margins and validate its robustness in the event of actuator failures.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB845302)the National Science and Technology Major Project of China(Grant No.2014ZX10004001-014)the National Natural Science Foundation of China(Grant No.11472290)
文摘Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.
基金supported by Esfahan Regional Electric Company(EREC)
文摘This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.
文摘Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.
基金supported by the National "973" Program of China (No. 2011CB921501)the National Natural Science Foundation of China (Nos. 61027016, 61078026, 10874008, and 10934010)
文摘A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.