O3 decomposition catalysts with excellent performance still need to be developed. In this study, Ag-modified manganese oxides(AgMnOx) were synthesized by a simple co-precipitation method. The effect of calcination tem...O3 decomposition catalysts with excellent performance still need to be developed. In this study, Ag-modified manganese oxides(AgMnOx) were synthesized by a simple co-precipitation method. The effect of calcination temperature on the activity of MnOx and AgMnOxcatalysts was investigated. The effect of the amount of Ag addition on the activity and structure of the catalysts was further studied by activity testing and characterization by a variety of techniques. The activity of 8%AgMnOxfor ozone decomposition was significantly enhanced due to the formation of the Ag1.8 Mn8 O16 structure, indicating that this phase has excellent performance for ozone decomposition.The weight content of Ag1.8 Mn8 O16 in the 8%AgMnOxcatalyst was only about 33.76%, which further indicates the excellent performance of the Ag1.8 Mn8 O16 phase for ozone decomposition. The H2 temperature programmed reduction(H2-TPR) results indicated that the reducibility of the catalysts increased due to the formation of the Ag1.8 Mn8 O16 structure.This study provides guidance for a follow-up study on Ag-modified manganese oxide catalysts for ozone decomposition.展开更多
Removal of carbonyl sulfide(COS) from CO2 stream is significant for the production and utilization of food grade CO2. This study investigates the adsorption performance of Ag/NaZSM-5 as adsorbent prepared by incipient...Removal of carbonyl sulfide(COS) from CO2 stream is significant for the production and utilization of food grade CO2. This study investigates the adsorption performance of Ag/NaZSM-5 as adsorbent prepared by incipient wetness impregnation for the removal of COS from a CO2 stream in a fixed-bed adsorption apparatus. Effects of various conditions on the preparation of adsorbent, adsorption and desorption were intensively examined. The results revealed that COS can be removed to below 1×10-9from a CO2stream(1000 ppm COS/CO2) using Ag/NaZSM-5(10 wt% AgNO3) with an adsorption capacity of 12.86 mg·g-1. The adsorbent can be fully regenerated using hot air at 450 C. The adsorption ability remained stable even after eight cycles of regeneration.展开更多
基金supported by the National Key R&D Program of China (Nos. 2016YFC0207104 and 2017YFC0211802)the National Natural Science Foundation of China (NSFC) (No. 21876191)the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2017064)
文摘O3 decomposition catalysts with excellent performance still need to be developed. In this study, Ag-modified manganese oxides(AgMnOx) were synthesized by a simple co-precipitation method. The effect of calcination temperature on the activity of MnOx and AgMnOxcatalysts was investigated. The effect of the amount of Ag addition on the activity and structure of the catalysts was further studied by activity testing and characterization by a variety of techniques. The activity of 8%AgMnOxfor ozone decomposition was significantly enhanced due to the formation of the Ag1.8 Mn8 O16 structure, indicating that this phase has excellent performance for ozone decomposition.The weight content of Ag1.8 Mn8 O16 in the 8%AgMnOxcatalyst was only about 33.76%, which further indicates the excellent performance of the Ag1.8 Mn8 O16 phase for ozone decomposition. The H2 temperature programmed reduction(H2-TPR) results indicated that the reducibility of the catalysts increased due to the formation of the Ag1.8 Mn8 O16 structure.This study provides guidance for a follow-up study on Ag-modified manganese oxide catalysts for ozone decomposition.
文摘Removal of carbonyl sulfide(COS) from CO2 stream is significant for the production and utilization of food grade CO2. This study investigates the adsorption performance of Ag/NaZSM-5 as adsorbent prepared by incipient wetness impregnation for the removal of COS from a CO2 stream in a fixed-bed adsorption apparatus. Effects of various conditions on the preparation of adsorbent, adsorption and desorption were intensively examined. The results revealed that COS can be removed to below 1×10-9from a CO2stream(1000 ppm COS/CO2) using Ag/NaZSM-5(10 wt% AgNO3) with an adsorption capacity of 12.86 mg·g-1. The adsorbent can be fully regenerated using hot air at 450 C. The adsorption ability remained stable even after eight cycles of regeneration.