The escalating global concern over air pollution requires rigorous investigations. This study assesses air quality near residential areas affected by petroleum-related activities in Ubeji Community, utilizing Aeroqual...The escalating global concern over air pollution requires rigorous investigations. This study assesses air quality near residential areas affected by petroleum-related activities in Ubeji Community, utilizing Aeroqual handheld mobile multi-gas monitors and air quality multi-meters. Air sampling occurred on three distinct days using multi-gas monitors and meters, covering parameters such as CO, NO2, CH4, NH3, VOCs, Particulate Matter, Temperature, Relative Humidity, and Air Quality Index. Soil and plant samples were collected and analyzed for physicochemical and organic components. Air pollutant concentrations showed significant fluctuations. Carbon monoxide (CO) ranged from 0.00 to 3.22 ppm, NO2 from 0.00 to 0.10 ppm, CH4 from 4.00 to 2083 ppm, NH3 from 371 to 5086 ppm, and VOCs from 414 to 6135 ppm. Soil analysis revealed low total nitrogen, and undetected BTEX levels. Plant samples displayed a pH range of 7.72 to 9.45. CO concentrations, although below WHO limits, indicated potential vehicular and industrial influences. Fluctuations in NO2 and CH4 were linked to traffic, industrial activities, and gas flaring. NH3 levels suggested diverse pollution sources. The result in this study highlights the dynamic nature of air pollution in Ubeji community, emphasizing the urgent need for effective pollution control measures. Although CO concentrations were within limits, continuous monitoring is essential. Elevated NO2 levels gave information on the impact of industrial activities, while high CH4 concentrations may be associated with gas flaring and illegal refining. The study recommends comprehensive measures and collaborative efforts to address these complex issues, safeguarding both the environment and public health. This study shows the potential synergy between air quality sensors and plants for holistic environmental health assessments, offering valuable insights for environmental assessments and remediation endeavours. The findings call for stringent regulations and collaborative efforts to address air pollution in Ubeji community comprehensively.展开更多
In order to solve the limitations of existing air quality evaluation system, a new air quality evaluation system was established based on FCM, the BP neural network, with the aim to provide scientific bases for the ta...In order to solve the limitations of existing air quality evaluation system, a new air quality evaluation system was established based on FCM, the BP neural network, with the aim to provide scientific bases for the targeted and efficient control of air pollution, formulation of prevention and control strategy, and improvement of living environment. Based on the existing data of 6 air quality indices, the air quality data were reclassified by using FCM algorithm, obtaining the clustering center, which minimized the cost function of non-similar index. Then, the reclassified 6 classes of data were proceeded with BP neural network training and simulation, so as to achieve the purpose of identification, thereby forming a new air quality evaluation system.展开更多
Air quality monitoring is effective for timely understanding of the current air quality status of a region or city.Currently,the huge volume of environmental monitoring data,which has reasonable real-time performance,...Air quality monitoring is effective for timely understanding of the current air quality status of a region or city.Currently,the huge volume of environmental monitoring data,which has reasonable real-time performance,provides strong support for in-depth analysis of air pollution characteristics and causes.However,in the era of big data,to meet current demands for fine management of the atmospheric environment,it is important to explore the characteristics and causes of air pollution from multiple aspects for comprehensive and scientific evaluation of air quality.This study reviewed and summarized air quality evaluation methods on the basis of environmental monitoring data statistics during the 13th Five-Year Plan period,and evaluated the level of air pollution in the Beijing-Tianjin-Hebei region and its surrounding areas(i.e.,the“2+26”region)during the period of the three-year action plan to fight air pollution.We suggest that air quality should be comprehensively,deeply,and scientifically evaluated from the aspects of air pollution characteristics,causes,and influences of meteorological conditions and anthropogenic emissions.It is also suggested that a threeyear moving average be introduced as one of the evaluation indexes of long-term change of pollutants.Additionally,both temporal and spatial differences should be considered when removing confounding meteorological factors.展开更多
Efficient air quality management is critical to protect public health from the adverse impacts of air pollution. To evaluate the effectiveness of air pollution control strategies, the US Environmental Protection Agen...Efficient air quality management is critical to protect public health from the adverse impacts of air pollution. To evaluate the effectiveness of air pollution control strategies, the US Environmental Protection Agency (US EPA) has developed the Software for Model Attainment Test-Community Edition (SMAT-CE) to assess the air quality attainment of emission reductions, and the Environmental Benefits Mapping and Analysis Program- Community Edition (BenMAP-CE) to evaluate the health and economic benefits of air quality improvement respectively. Since scientific decision-making requires timely and coherent information, developing the linkage between SMAT-CE and BenMAP-CE into an integrated assessment platform is desirable. To address this need, a new module linking SMAT-CE to BenMAP-CE has been developed and tested. The new module streamlines the assessment of air quality and human health benefits for a proposed air pollution control strategy. It also implements an optimized data gridding algorithm which significantly enhances the computational efficiency without compro- mising accuracy. The performance of the integrated software package is demonstrated through a case study that evaluates the air quality and associated economic benefits of a national-level control strategy of PM2.5. The results of the case study show that the proposed emission reduction reduces the number of nonattainment sites from 379 to 25 based on the US National Ambient Air Quality Standards, leading to more than USS334billion ofeconomic benefits annually from improved public health. The integration of the science-based software tools in this study enhances the efficiency of developing effective and optimized emission control strategies for policy makers.展开更多
This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streaml...This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM_(2.5) attainment assessment in China.This method is capable of significantly reducing the dimensions required to establish a response surface model,as well as capturing more realistic response of PM_(2.5) to emission changes with a limited number of model simulations.The newly developed module establishes a data link between the system and the Software for Model Attainment Test—Community Edition(SMAT-CE),and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface.The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta(YRD) in China.Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality(CMAQ) model simulation results with maximum mean normalized error 〈 3.5%.It is also demonstrated that primary emissions make a major contribution to ambient levels of PM_(2.5) in January and August(e.g.,more than50%contributed by primary emissions in Shanghai),and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM_(2.5)National Ambient Air Quality Standard.The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM_(2.5)(and potentially O_3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments.展开更多
文摘The escalating global concern over air pollution requires rigorous investigations. This study assesses air quality near residential areas affected by petroleum-related activities in Ubeji Community, utilizing Aeroqual handheld mobile multi-gas monitors and air quality multi-meters. Air sampling occurred on three distinct days using multi-gas monitors and meters, covering parameters such as CO, NO2, CH4, NH3, VOCs, Particulate Matter, Temperature, Relative Humidity, and Air Quality Index. Soil and plant samples were collected and analyzed for physicochemical and organic components. Air pollutant concentrations showed significant fluctuations. Carbon monoxide (CO) ranged from 0.00 to 3.22 ppm, NO2 from 0.00 to 0.10 ppm, CH4 from 4.00 to 2083 ppm, NH3 from 371 to 5086 ppm, and VOCs from 414 to 6135 ppm. Soil analysis revealed low total nitrogen, and undetected BTEX levels. Plant samples displayed a pH range of 7.72 to 9.45. CO concentrations, although below WHO limits, indicated potential vehicular and industrial influences. Fluctuations in NO2 and CH4 were linked to traffic, industrial activities, and gas flaring. NH3 levels suggested diverse pollution sources. The result in this study highlights the dynamic nature of air pollution in Ubeji community, emphasizing the urgent need for effective pollution control measures. Although CO concentrations were within limits, continuous monitoring is essential. Elevated NO2 levels gave information on the impact of industrial activities, while high CH4 concentrations may be associated with gas flaring and illegal refining. The study recommends comprehensive measures and collaborative efforts to address these complex issues, safeguarding both the environment and public health. This study shows the potential synergy between air quality sensors and plants for holistic environmental health assessments, offering valuable insights for environmental assessments and remediation endeavours. The findings call for stringent regulations and collaborative efforts to address air pollution in Ubeji community comprehensively.
基金Supported by the Youth Foundation for Science and Technology Research of Higher of Universities in Henan Province(QN2016243)
文摘In order to solve the limitations of existing air quality evaluation system, a new air quality evaluation system was established based on FCM, the BP neural network, with the aim to provide scientific bases for the targeted and efficient control of air pollution, formulation of prevention and control strategy, and improvement of living environment. Based on the existing data of 6 air quality indices, the air quality data were reclassified by using FCM algorithm, obtaining the clustering center, which minimized the cost function of non-similar index. Then, the reclassified 6 classes of data were proceeded with BP neural network training and simulation, so as to achieve the purpose of identification, thereby forming a new air quality evaluation system.
基金supported by the National Key Research and Development Program of China(No.2019YFC0214800)。
文摘Air quality monitoring is effective for timely understanding of the current air quality status of a region or city.Currently,the huge volume of environmental monitoring data,which has reasonable real-time performance,provides strong support for in-depth analysis of air pollution characteristics and causes.However,in the era of big data,to meet current demands for fine management of the atmospheric environment,it is important to explore the characteristics and causes of air pollution from multiple aspects for comprehensive and scientific evaluation of air quality.This study reviewed and summarized air quality evaluation methods on the basis of environmental monitoring data statistics during the 13th Five-Year Plan period,and evaluated the level of air pollution in the Beijing-Tianjin-Hebei region and its surrounding areas(i.e.,the“2+26”region)during the period of the three-year action plan to fight air pollution.We suggest that air quality should be comprehensively,deeply,and scientifically evaluated from the aspects of air pollution characteristics,causes,and influences of meteorological conditions and anthropogenic emissions.It is also suggested that a threeyear moving average be introduced as one of the evaluation indexes of long-term change of pollutants.Additionally,both temporal and spatial differences should be considered when removing confounding meteorological factors.
文摘Efficient air quality management is critical to protect public health from the adverse impacts of air pollution. To evaluate the effectiveness of air pollution control strategies, the US Environmental Protection Agency (US EPA) has developed the Software for Model Attainment Test-Community Edition (SMAT-CE) to assess the air quality attainment of emission reductions, and the Environmental Benefits Mapping and Analysis Program- Community Edition (BenMAP-CE) to evaluate the health and economic benefits of air quality improvement respectively. Since scientific decision-making requires timely and coherent information, developing the linkage between SMAT-CE and BenMAP-CE into an integrated assessment platform is desirable. To address this need, a new module linking SMAT-CE to BenMAP-CE has been developed and tested. The new module streamlines the assessment of air quality and human health benefits for a proposed air pollution control strategy. It also implements an optimized data gridding algorithm which significantly enhances the computational efficiency without compro- mising accuracy. The performance of the integrated software package is demonstrated through a case study that evaluates the air quality and associated economic benefits of a national-level control strategy of PM2.5. The results of the case study show that the proposed emission reduction reduces the number of nonattainment sites from 379 to 25 based on the US National Ambient Air Quality Standards, leading to more than USS334billion ofeconomic benefits annually from improved public health. The integration of the science-based software tools in this study enhances the efficiency of developing effective and optimized emission control strategies for policy makers.
基金Financial support and data source for this work is provided by the US Environmental Protection Agency(No.OR13810-001.04 A10-0223-S001-A02)Guangzhou Environmental Protection Bureau(No.x2hj B2150020)+4 种基金the project of an integrated modeling and filed observational verification on the deposition of typical industrial point-source mercury emissions in the Pearl River Deltapartly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(No.2011A060901011)the project of Atmospheric Haze Collaboration Control Technology Design(No.XDB05030400)from the Chinese Academy of Sciencesthe Ministry of Environmental Protection's Special Funds for Research on Public Welfare(No.201409002)Partly financial support is also provided by the Guangdong Provincial Department of Science and Technology,the project of demonstration research of air quality management cost-benefit analysis and attainment assessments technology(No.2014A050503019)
文摘This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM_(2.5) attainment assessment in China.This method is capable of significantly reducing the dimensions required to establish a response surface model,as well as capturing more realistic response of PM_(2.5) to emission changes with a limited number of model simulations.The newly developed module establishes a data link between the system and the Software for Model Attainment Test—Community Edition(SMAT-CE),and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface.The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta(YRD) in China.Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality(CMAQ) model simulation results with maximum mean normalized error 〈 3.5%.It is also demonstrated that primary emissions make a major contribution to ambient levels of PM_(2.5) in January and August(e.g.,more than50%contributed by primary emissions in Shanghai),and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM_(2.5)National Ambient Air Quality Standard.The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM_(2.5)(and potentially O_3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments.