Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their aco...Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their acoustic insulation capability is hindered by issues such as sound bridges, resonance, and coincidence dips, resulting in inadequate sound insulation. This study aims to propose LFW designs with superior acoustic insulation suitable for practical engineering while meeting prevailing national standards. Nine full-scale LFW configurations were subjected to laboratory testing to evaluate the impact of staggered stud arrangements, stud types, and incorporation of compounded materials. The tests were performed between 100 and 5000 Hz,and the sound pressure level and reverberation time at 1/3 octave band were measured and used to calculate the weighted sound insulation index(Rw). Results demonstrated that the outlined design modifications significantly enhanced the sound insulation of the LFW. These modifications effectively mitigate the influence of sound bridges while addressing resonance and coincidence dips inherent in the wall system. Particularly noteworthy was the superior sound insulation achieved by staggered-stud LFWs with compounded materials, surpassing that of autoclaved lightweight concrete walls commonly used in prefabricated constructions despite having lesser thickness and surface density. Rwvalues increased from 43 to 54 dB compared to conventional LFWs, translating to a notable elevation in airborne sound insulation level from 4 to 7 as an internal separation component,meeting the requisite standards for most applications.展开更多
基金supported by Jiangsu Science and Technology Project (Grant No. BE2022790)the Special Fund for Green Building Development in Jiangsu Province (Grant No. (2021) 62-42)the Open Research Fund of Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes (Grant No. AAE2021YB02)。
文摘Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their acoustic insulation capability is hindered by issues such as sound bridges, resonance, and coincidence dips, resulting in inadequate sound insulation. This study aims to propose LFW designs with superior acoustic insulation suitable for practical engineering while meeting prevailing national standards. Nine full-scale LFW configurations were subjected to laboratory testing to evaluate the impact of staggered stud arrangements, stud types, and incorporation of compounded materials. The tests were performed between 100 and 5000 Hz,and the sound pressure level and reverberation time at 1/3 octave band were measured and used to calculate the weighted sound insulation index(Rw). Results demonstrated that the outlined design modifications significantly enhanced the sound insulation of the LFW. These modifications effectively mitigate the influence of sound bridges while addressing resonance and coincidence dips inherent in the wall system. Particularly noteworthy was the superior sound insulation achieved by staggered-stud LFWs with compounded materials, surpassing that of autoclaved lightweight concrete walls commonly used in prefabricated constructions despite having lesser thickness and surface density. Rwvalues increased from 43 to 54 dB compared to conventional LFWs, translating to a notable elevation in airborne sound insulation level from 4 to 7 as an internal separation component,meeting the requisite standards for most applications.