The effects of pre-deformation following solution treatment on the microstructure and mechanical properties of aged high purity Al-Cu-Mg alloy were studied by tensile test, micro-hardness measurements, transmission el...The effects of pre-deformation following solution treatment on the microstructure and mechanical properties of aged high purity Al-Cu-Mg alloy were studied by tensile test, micro-hardness measurements, transmission electron microscopy and scanning electron microscopy. The micro-hardness measurements indicate that compared with un-deformed samples, the peak hardness is increased and the time to reach peak hardness is reduced with increasing pre-strain. Additionally, a double-peak hardness evolution behavior of cold-rolled (CR) samples was observed during aging. The results of TEM observation show that the number density of S′(Al2CuMg) phase is increased and the size is decreased in CR alloy with increase of pre-strain. The peak hardness and peak strength of the CR alloy are increased because of quantity increasing and refinement of S′ phase and high density dislocation.展开更多
Corrosion behavior of 2024 Al-Cu-Mg alloy of different tempers was assessed by potentiodynamic polarization studies in 3.5% NaCl solution, 3.5% NaCI+I.0% H2O2 solution and 3.5% NaCl solution at pH 12. Polarization cu...Corrosion behavior of 2024 Al-Cu-Mg alloy of different tempers was assessed by potentiodynamic polarization studies in 3.5% NaCl solution, 3.5% NaCI+I.0% H2O2 solution and 3.5% NaCl solution at pH 12. Polarization curves showed shifting of corrosion potential (φPcor) towards more negative potential with increasing ageing time and shifting of φcorr in the positive direction with the addition of H2O2 in NaCl solution. Polarization curves in 3.5% NaCl solution at pH 12 exhibited distinct passivity phenomenon. Optical micrographs of the corroded surfaces showed general corrosion, extensive pitting and intergranular corrosion as well. Cyclic potentiodynamic polarization curves exhibited wide hysteresis loop and the mode of corrosion attack confirmed that the alloy states are susceptible to pit growth damage. Attempts were made to explain the observed corrosion behavior of the alloy of various tempers in different electrolytes with the help of microstructural features.展开更多
High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipit...High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.展开更多
The microstructure evolution of spray formed and rapidly solidified Al-Cu-Mg alloy with fine grains during rapid cold punching and recrystallization annealing was investigated by transmission electron microscopy(TEM)....The microstructure evolution of spray formed and rapidly solidified Al-Cu-Mg alloy with fine grains during rapid cold punching and recrystallization annealing was investigated by transmission electron microscopy(TEM). The results show that the precipitates of fine-grained Al-Cu-Mg alloy during rapid cold punching and recrystallization annealing mainly consist of S phase and a small amount of coarse Al6Mn phase. With the increase of deformation passes, the density of precipitates increases, the size of precipitates decreases significantly, and the deformation and transition bands disappear gradually. In addition, the grains are refined and tend to be uniform. Defects introduced by rapid cold punching contribute to the precipitation and recrystallization, and promote nucleation and growth of S phase and recrystallization. Deformation and transition bands in the coarse grains transform into deformation-induced grain boundary during the deformation and recrystallization, which refine grains, obtain uniform nanocrystalline structure and promote homogeneous distribution of S phase.展开更多
Combining first-principles accuracy and empirical-potential efficiency for the description of the potential energy surface(PES)is the philosopher's stone for unraveling the nature of matter via atomistic simulatio...Combining first-principles accuracy and empirical-potential efficiency for the description of the potential energy surface(PES)is the philosopher's stone for unraveling the nature of matter via atomistic simulation.This has been particularly challenging for multi-component alloy systems due to the complex and non-linear nature of the associated PES.In this work,we develop an accurate PES model for the Al-Cu-Mg system by employing deep potential(DP),a neural network based representation of the PES,and DP generator(DP-GEN),a concurrent-learning scheme that generates a compact set of ab initio data for training.The resulting DP model gives predictions consistent with first-principles calculations for various binary and ternary systems on their fundamental energetic and mechanical properties,including formation energy,equilibrium volume,equation of state,interstitial energy,vacancy and surface formation energy,as well as elastic moduli.Extensive benchmark shows that the DP model is ready and will be useful for atomistic modeling of the Al-Cu-Mg system within the full range of concentration.展开更多
Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mec...Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mechanical properties of spray-formed Al-Cu-Mg alloys during large-strain rolling at 420℃.Results show that during hot rolling,the proportion of high-angle grain boundaries(HAGBs)and the degree of dynamic recrystallization(DRX)initially increase and then decrease,whereas the average grain size and dislocation density show the opposite trend with the increase of the strain rate.In addition,the number of S′phases in the matrix decreases,and the grain boundary precipitates(GBPs)become coarser and more discontinuous as the strain rate increases.When the strain rate increases from 0.1 to 9.1 s^(-1),the tensile strength of the alloy decreases from 492.45 to 427.63 MPa,whereas the elongation initially increases from 12.1%to 21.8%and then decreases to 17.7%.展开更多
Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure...Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.展开更多
To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructure...To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructures of the optimized Al-Cu-Mg alloy were observed by means of scanning electron microscopy and transmission electron microscopy,and the properties were investigated by hardness measurements,tensile tests,exfoliation corrosion tests,and intergranular corrosion tests.Results show that the S phase andθ’phase simultaneously exist in the T6I6 treated alloy.Appropriately increasing the temperature of the interrupted aging in the T6I6 process can improve the mechanical properties and corrosion resistance of Al-Cu-Mg alloy.The optimal comprehensive properties(tensile strength of 443.6 MPa,hardness of 161.6 HV)of the alloy are obtained by initial aging at 180℃for 2 h,interrupted aging at 90℃for 30 min,and re-aging at 170℃for 4 h.展开更多
The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to...The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.展开更多
By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation a...By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.展开更多
In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of...In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of as-cast, homogenized, hot-rolled, as-solution and natural aged, were observed by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). It is revealed that Sc and Zr are completely dissolved into the supersaturated solid solution in as-cast ingot, but grain refinement is not observed. Coffee-bean-like AI3(Sc, Zr) particles deposit during homogenization of ingot induce an increase in hardness. Al3(Sc, Zr) particles are slightly coarsened in as-solution samples, but they still maintain coherent to matrix, which indicates a high thermal stability of these particles. Good coherency ofAl3(Sc, Zr) particles makes some benefits for inhibiting recrystallization and reserving work-hardening.展开更多
Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information o...Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information on alloy surfacebefore and after corrosion testing. Energy dispersive X-ray spectroscopy was carried out to determine compositional change inintermetallic particles. Atomic force microscopy was used to examine topographical variation introduced by the reactions ofintermetallic phases. Transmission electron microscopy combined with ultramicrotomy was carried out on dealloyed Al2CuMgparticles and their periphery region. It is found that dealloyed Al2CuMg particles exhibited porous, polycrystalline structurecomprised of body-centred cubic copper particles with sizes of 5 to 20 nm. Aluminium matrix started to trench in the periphery ofAl2CuMg particles at the early stage of dealloying. Development of trenching in Al.Cu.Fe.Mn.(Si) particle’s periphery was notuniform and took longer time to initiate than Al2CuMg dealloying. Localized corrosion at a cluster of Al2CuMg and Al2Cu particleswas mainly associated with Al2CuMg particles.展开更多
The combined effects of pre-deformation and pre-aging on the mechanical properties of AlCu-Mg alloy with Sc and Zr addition were investigated. It is revealed that the introduction of pre-deformation can enhance the pe...The combined effects of pre-deformation and pre-aging on the mechanical properties of AlCu-Mg alloy with Sc and Zr addition were investigated. It is revealed that the introduction of pre-deformation can enhance the peak-aging strength, as well as tensile and yield strength, effectively due to the formation of finer and more dispersive precipitation. Pre-aging process before pre-deformation can increase the elongation while maintaining higher strength with a discontinuous distribution of precipitates at grain boundary. The precipitates of bean-like Al3(Sc, Zr) particles further strengthen the alloy via pinning the dislocations which are formed during pre-deformation process and hindering the dislocation motion. Furthermore, pre-deformation and pre-aging accelerate the kinetics of precipitation due to preferential sites provided by the dislocation and the increase of GPB zones' size and distribution. The synergism of pre-deformation and pre-aging achieves a combination of better mechanical properties and shorter peak-aging time.展开更多
In this work,the Al-Cu-Mg alloy with different Y(0-0.2 wt%)and Ce(0.5-1.5 wt%)are designed.The effect of mixed addition of Y and Ce on the grain structure and hot tearing for Al-4.4Cu-1.5Mg-0.15Zr alloy was investigat...In this work,the Al-Cu-Mg alloy with different Y(0-0.2 wt%)and Ce(0.5-1.5 wt%)are designed.The effect of mixed addition of Y and Ce on the grain structure and hot tearing for Al-4.4Cu-1.5Mg-0.15Zr alloy was investigated using"cross"hot tearing mould.The results indicate that as rare earth Y and Ce increases,the grain size becomes finer,the grain morphology changes from dendrite to equiaxed grain,and effectively reduce the hot tearing sensitivity coefficient(HTS1)and crack susceptibility coefficient(CSC)of the alloy.With the increase of Ce element(0.5-1.5 wt%),the hot tearing susceptibility of the alloy decreases first and then increases.With the increase of Y element(0-0.2 wt%),the hot tearing sensitivity of the alloy decreases.When the content of rare earth is 0.2 wt%Y+1.0 wt%Ce,the minimum HTS1 value and CSC value of the alloy are 68 and 0.53,respectively.Rare earth Ce refines the alloy microstructure,shortens the feeding channel,and reduces the hot tearing initiation.Meanwhile,the rare earth Y can form Al6Cu6Y phase at the grain boundary,improve the feeding capacity of the alloy.Therefore,appropriate addition of rare earth Y and Ce can effectively reduce the hot tearing tendency of the alloy.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Stability of grain structure,dislocation ordering and strengthening mechanisms of the naturally aged AlCu-Mg alloy after solution treatment are investigated by using optical microscope(OM),scanning electron microscope...Stability of grain structure,dislocation ordering and strengthening mechanisms of the naturally aged AlCu-Mg alloy after solution treatment are investigated by using optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD),X-ray diffraction(XRD) and transmission electron microscope(TEM).Results show that {100}<001>,{100}<110>,{110}<110> and {110}<001>slip systems can be activated after solution treatment,which can promote the formation of {110}<001>Goss texture.The combination effect of T-Al_(20)Cu_(2) Mn_(3) phase and Goss-oriented grains with large Taylor factor makes the solution-treated alloys display excellent stability of grain structure.The enhanced yield strength of the alloy is ascribed to grain-refine strengthening,dispersed particles strengthening,dislocation strengthening and texture strengthening.The coarsening of the second phase is responsible for softening of the alloy after annealing at 400 ℃+solution treatment at 475 ℃.展开更多
Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum...Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum alloys.This study investigated the l-PBF processability and elevated-temperature mechanical properties of a Zr-modified 2024Al alloy.It was found that the hot-cracking susceptibility increased with the increased scanning speed,which was in reasonable agreement with the modified Rappaz-Drezet-Gremaud criterion.Furthermore,the primary L1_(2)-Al_(3)Zr precipitates,which acted as ef-ficient nucleation sites,precipitated at the fusion boundary of the melt pool,leading to the formation of a heterogeneous grain structure.The yield strength(YS)of the as-fabricated samples at 150,250,and 350℃was 363,210,and 48 MPa,respectively.Despite the slight decrease to 360 MPa of the YS when tested at 150℃,owing to the additional precipitate strengthening from the L1_(2)-Al_(3)Zr precipitates,the YS achieved yield strengths of 253 and 69 MPa,an increase of 20.5%and 30.4%,when tested at 250 and 350℃,respectively.The yield strengths in both the as-fabricated and T6-treated conditions tested at 150 and 250℃were comparable to those of casting Al-Cu-Mg-Ag alloys and superior to those of traditionally heat-resistant 2219-T6 and 2618-T6 of Al-Cu alloys.展开更多
基金Project(51301209)supported by the National Natural Science Foundation of China
文摘The effects of pre-deformation following solution treatment on the microstructure and mechanical properties of aged high purity Al-Cu-Mg alloy were studied by tensile test, micro-hardness measurements, transmission electron microscopy and scanning electron microscopy. The micro-hardness measurements indicate that compared with un-deformed samples, the peak hardness is increased and the time to reach peak hardness is reduced with increasing pre-strain. Additionally, a double-peak hardness evolution behavior of cold-rolled (CR) samples was observed during aging. The results of TEM observation show that the number density of S′(Al2CuMg) phase is increased and the size is decreased in CR alloy with increase of pre-strain. The peak hardness and peak strength of the CR alloy are increased because of quantity increasing and refinement of S′ phase and high density dislocation.
文摘Corrosion behavior of 2024 Al-Cu-Mg alloy of different tempers was assessed by potentiodynamic polarization studies in 3.5% NaCl solution, 3.5% NaCI+I.0% H2O2 solution and 3.5% NaCl solution at pH 12. Polarization curves showed shifting of corrosion potential (φPcor) towards more negative potential with increasing ageing time and shifting of φcorr in the positive direction with the addition of H2O2 in NaCl solution. Polarization curves in 3.5% NaCl solution at pH 12 exhibited distinct passivity phenomenon. Optical micrographs of the corroded surfaces showed general corrosion, extensive pitting and intergranular corrosion as well. Cyclic potentiodynamic polarization curves exhibited wide hysteresis loop and the mode of corrosion attack confirmed that the alloy states are susceptible to pit growth damage. Attempts were made to explain the observed corrosion behavior of the alloy of various tempers in different electrolytes with the help of microstructural features.
基金Project(2019JJ60050) supported by the Natural Science Foundation of Hunan Province,China
文摘High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.
基金Project(2019JJ60050)supported by the Natural Science Foundation of Hunan Province,China
文摘The microstructure evolution of spray formed and rapidly solidified Al-Cu-Mg alloy with fine grains during rapid cold punching and recrystallization annealing was investigated by transmission electron microscopy(TEM). The results show that the precipitates of fine-grained Al-Cu-Mg alloy during rapid cold punching and recrystallization annealing mainly consist of S phase and a small amount of coarse Al6Mn phase. With the increase of deformation passes, the density of precipitates increases, the size of precipitates decreases significantly, and the deformation and transition bands disappear gradually. In addition, the grains are refined and tend to be uniform. Defects introduced by rapid cold punching contribute to the precipitation and recrystallization, and promote nucleation and growth of S phase and recrystallization. Deformation and transition bands in the coarse grains transform into deformation-induced grain boundary during the deformation and recrystallization, which refine grains, obtain uniform nanocrystalline structure and promote homogeneous distribution of S phase.
基金the National Natural Science Foundation of China(Grant No.11871110)the National Key Research and Development Program of China(Grant Nos.2016YFB0201200 and 2016YFB0201203)Beijing Academy of Artificial Intelligence(BAAI).
文摘Combining first-principles accuracy and empirical-potential efficiency for the description of the potential energy surface(PES)is the philosopher's stone for unraveling the nature of matter via atomistic simulation.This has been particularly challenging for multi-component alloy systems due to the complex and non-linear nature of the associated PES.In this work,we develop an accurate PES model for the Al-Cu-Mg system by employing deep potential(DP),a neural network based representation of the PES,and DP generator(DP-GEN),a concurrent-learning scheme that generates a compact set of ab initio data for training.The resulting DP model gives predictions consistent with first-principles calculations for various binary and ternary systems on their fundamental energetic and mechanical properties,including formation energy,equilibrium volume,equation of state,interstitial energy,vacancy and surface formation energy,as well as elastic moduli.Extensive benchmark shows that the DP model is ready and will be useful for atomistic modeling of the Al-Cu-Mg system within the full range of concentration.
基金financially supported by the Major Special Projects in Anhui Province,China(No.202003c08020005)the Key Projects in Hunan Province,China(No.2020GK2045)。
文摘Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mechanical properties of spray-formed Al-Cu-Mg alloys during large-strain rolling at 420℃.Results show that during hot rolling,the proportion of high-angle grain boundaries(HAGBs)and the degree of dynamic recrystallization(DRX)initially increase and then decrease,whereas the average grain size and dislocation density show the opposite trend with the increase of the strain rate.In addition,the number of S′phases in the matrix decreases,and the grain boundary precipitates(GBPs)become coarser and more discontinuous as the strain rate increases.When the strain rate increases from 0.1 to 9.1 s^(-1),the tensile strength of the alloy decreases from 492.45 to 427.63 MPa,whereas the elongation initially increases from 12.1%to 21.8%and then decreases to 17.7%.
基金Project(NRF-2012R1A1A1012983) supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT&Future PlanningProject supported by the New Faculty Research Fund of Ajou University,Korea
文摘Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.
基金financially supported by the Program for National Key Research and Development Plan(No.2017YFB1104000)the National Natural Science Foundation of China(No.51574167)+1 种基金the Liaoning Natural Science Foundation(No.2021-MS-235)the Science and Technology Program of Liaoning Provincial Department of Education(No.LJGD2020010)。
文摘To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructures of the optimized Al-Cu-Mg alloy were observed by means of scanning electron microscopy and transmission electron microscopy,and the properties were investigated by hardness measurements,tensile tests,exfoliation corrosion tests,and intergranular corrosion tests.Results show that the S phase andθ’phase simultaneously exist in the T6I6 treated alloy.Appropriately increasing the temperature of the interrupted aging in the T6I6 process can improve the mechanical properties and corrosion resistance of Al-Cu-Mg alloy.The optimal comprehensive properties(tensile strength of 443.6 MPa,hardness of 161.6 HV)of the alloy are obtained by initial aging at 180℃for 2 h,interrupted aging at 90℃for 30 min,and re-aging at 170℃for 4 h.
基金Project(51301209) supported by the National Natural Science Foundation of ChinaProject(201191107) supported by Science and Technology Plan of Xinjiang Province,China
文摘The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.
基金Projects(51371081,11427806,51471067,51171063) supported by the National Natural Science Foundation of ChinaProject(2009CB623704) supported by the National Basic Research Program of China
文摘By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.
基金Project(2005DFA50550) supported by International Science and Technology Cooperation Program of ChinaProject(2005CB623705) supported by the National Basic Research Program of China
文摘In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of as-cast, homogenized, hot-rolled, as-solution and natural aged, were observed by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). It is revealed that Sc and Zr are completely dissolved into the supersaturated solid solution in as-cast ingot, but grain refinement is not observed. Coffee-bean-like AI3(Sc, Zr) particles deposit during homogenization of ingot induce an increase in hardness. Al3(Sc, Zr) particles are slightly coarsened in as-solution samples, but they still maintain coherent to matrix, which indicates a high thermal stability of these particles. Good coherency ofAl3(Sc, Zr) particles makes some benefits for inhibiting recrystallization and reserving work-hardening.
基金Project(51201157)supported by the National Natural Science Foundation of ChinaProject(H052013A003)supported by the National Defense Technology Foundation,ChinaProject supported by the UK-ESPRC LATEST2 Program
文摘Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information on alloy surfacebefore and after corrosion testing. Energy dispersive X-ray spectroscopy was carried out to determine compositional change inintermetallic particles. Atomic force microscopy was used to examine topographical variation introduced by the reactions ofintermetallic phases. Transmission electron microscopy combined with ultramicrotomy was carried out on dealloyed Al2CuMgparticles and their periphery region. It is found that dealloyed Al2CuMg particles exhibited porous, polycrystalline structurecomprised of body-centred cubic copper particles with sizes of 5 to 20 nm. Aluminium matrix started to trench in the periphery ofAl2CuMg particles at the early stage of dealloying. Development of trenching in Al.Cu.Fe.Mn.(Si) particle’s periphery was notuniform and took longer time to initiate than Al2CuMg dealloying. Localized corrosion at a cluster of Al2CuMg and Al2Cu particleswas mainly associated with Al2CuMg particles.
基金Funded by the National High-tech Research&Development Program of China(No.2013AA031002)
文摘The combined effects of pre-deformation and pre-aging on the mechanical properties of AlCu-Mg alloy with Sc and Zr addition were investigated. It is revealed that the introduction of pre-deformation can enhance the peak-aging strength, as well as tensile and yield strength, effectively due to the formation of finer and more dispersive precipitation. Pre-aging process before pre-deformation can increase the elongation while maintaining higher strength with a discontinuous distribution of precipitates at grain boundary. The precipitates of bean-like Al3(Sc, Zr) particles further strengthen the alloy via pinning the dislocations which are formed during pre-deformation process and hindering the dislocation motion. Furthermore, pre-deformation and pre-aging accelerate the kinetics of precipitation due to preferential sites provided by the dislocation and the increase of GPB zones' size and distribution. The synergism of pre-deformation and pre-aging achieves a combination of better mechanical properties and shorter peak-aging time.
基金supported by the National Natural Science Foundation of China(No.51875365)the Liaoning Province Science and Technology Plan Joint Fund Project(Nos.2023-BSBA-248 and 2023-MSLH-265)the Scientific Research Fund of Liaoning Provincial Education Department(No.LJKZ0122).
文摘In this work,the Al-Cu-Mg alloy with different Y(0-0.2 wt%)and Ce(0.5-1.5 wt%)are designed.The effect of mixed addition of Y and Ce on the grain structure and hot tearing for Al-4.4Cu-1.5Mg-0.15Zr alloy was investigated using"cross"hot tearing mould.The results indicate that as rare earth Y and Ce increases,the grain size becomes finer,the grain morphology changes from dendrite to equiaxed grain,and effectively reduce the hot tearing sensitivity coefficient(HTS1)and crack susceptibility coefficient(CSC)of the alloy.With the increase of Ce element(0.5-1.5 wt%),the hot tearing susceptibility of the alloy decreases first and then increases.With the increase of Y element(0-0.2 wt%),the hot tearing sensitivity of the alloy decreases.When the content of rare earth is 0.2 wt%Y+1.0 wt%Ce,the minimum HTS1 value and CSC value of the alloy are 68 and 0.53,respectively.Rare earth Ce refines the alloy microstructure,shortens the feeding channel,and reduces the hot tearing initiation.Meanwhile,the rare earth Y can form Al6Cu6Y phase at the grain boundary,improve the feeding capacity of the alloy.Therefore,appropriate addition of rare earth Y and Ce can effectively reduce the hot tearing tendency of the alloy.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金financially sponsored by the National Natural Science Foundation of China (No. 51171209)the National Key Research and Development Program of China (No. 2016YFB0300900)the National Key Fundamental Research Project of China (No.2012CB619506-3)。
文摘Stability of grain structure,dislocation ordering and strengthening mechanisms of the naturally aged AlCu-Mg alloy after solution treatment are investigated by using optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD),X-ray diffraction(XRD) and transmission electron microscope(TEM).Results show that {100}<001>,{100}<110>,{110}<110> and {110}<001>slip systems can be activated after solution treatment,which can promote the formation of {110}<001>Goss texture.The combination effect of T-Al_(20)Cu_(2) Mn_(3) phase and Goss-oriented grains with large Taylor factor makes the solution-treated alloys display excellent stability of grain structure.The enhanced yield strength of the alloy is ascribed to grain-refine strengthening,dispersed particles strengthening,dislocation strengthening and texture strengthening.The coarsening of the second phase is responsible for softening of the alloy after annealing at 400 ℃+solution treatment at 475 ℃.
基金The work was financially supported by the National Key R&D Program of China(No.2016YFB1100100)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2020-TZ-02)+3 种基金the Advance Research Projects in the Field of Manned Spaceflight(No.040302)the Shanghai Aerospace Science and Technology Innovation Fund Project(No.SAST2018-066)This work was also supported by the“Fundamental Research Funds for the Central Universities”(No.G2021KY05104)the“Natural Science Basis Research Plan in Shaanxi Province of China”(No.2022JQ-479).We would like to thank Editage(www.editage.com)for En-glish language editing.
文摘Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum alloys.This study investigated the l-PBF processability and elevated-temperature mechanical properties of a Zr-modified 2024Al alloy.It was found that the hot-cracking susceptibility increased with the increased scanning speed,which was in reasonable agreement with the modified Rappaz-Drezet-Gremaud criterion.Furthermore,the primary L1_(2)-Al_(3)Zr precipitates,which acted as ef-ficient nucleation sites,precipitated at the fusion boundary of the melt pool,leading to the formation of a heterogeneous grain structure.The yield strength(YS)of the as-fabricated samples at 150,250,and 350℃was 363,210,and 48 MPa,respectively.Despite the slight decrease to 360 MPa of the YS when tested at 150℃,owing to the additional precipitate strengthening from the L1_(2)-Al_(3)Zr precipitates,the YS achieved yield strengths of 253 and 69 MPa,an increase of 20.5%and 30.4%,when tested at 250 and 350℃,respectively.The yield strengths in both the as-fabricated and T6-treated conditions tested at 150 and 250℃were comparable to those of casting Al-Cu-Mg-Ag alloys and superior to those of traditionally heat-resistant 2219-T6 and 2618-T6 of Al-Cu alloys.