The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed...The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.展开更多
Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried...Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
Rules and mechanism of damage in Al2O3 coatings irradiated by CO2 CW laser are studied in order to improve the ability of parts of equipment standing against the high power laser. Al2O3 coatings were sprayed by air pl...Rules and mechanism of damage in Al2O3 coatings irradiated by CO2 CW laser are studied in order to improve the ability of parts of equipment standing against the high power laser. Al2O3 coatings were sprayed by air plasma spray(APS) on the 45^# steel substrate, and then were irradiated by CO2 CW laser from 795 W/cm^2 to 31 830 W/cm^2. As the output power of the laser is increasing, its porosity is increasing and cracks are appearing and spreading quickly, And also the phase will transform from γ-Al2O3 to a-Al2O3 in the damaged areas. When the energy density is 17 507 W/cm^2, the coatings are destroyed completely. The thermal infection field on substrate is rather small. The laser energy is depleted by the phase transformation and cracks in Al2O3 coatings during the laser thermal shock.展开更多
The synthesis of Al2O3-coated and uncoated LiMn2O4 by solid-state method and fabrication of LiMn2O4/graphite battery were described. The structure and morphology of the powders were characterized by X-ray diffraction ...The synthesis of Al2O3-coated and uncoated LiMn2O4 by solid-state method and fabrication of LiMn2O4/graphite battery were described. The structure and morphology of the powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical and overcharge performances of Al2O3-coated and uncoated LiMn2O4 batteries were investigated and compared. The uncoated LiMn2O4 battery shows capacity loss of 16.5% after 200 cycles, and the coated LiMn2O4 battery only shows 12.5% after 200 cycles. The uncoated LiMn2O4 battery explodes and creates carbon, MnO, and Li2CO3 after 3C/10 V overcharged test, while the coated LiMn2O4 battery passes the test. The steadier structure, polarization of electrode and modified layer are responsible for the safety performance.展开更多
Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as...Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.展开更多
Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, s...Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, scanning electron microscopy, and energy-dispersive spec-trometry, respectively. Thermal shock tests were carried out to determine the bond strength of the coating with the steel substrate. The results indicate that the coating is composed of α-A1203, α-(Fe-Cr) and Al2SiO5 as the main phases. It is found that the coating with the diluents of Al2O3-SiO2 and transition layer of Al2O3-Cr presents the hi.ghest hardness of 2270 HV0.2 and the lowest porosity of 3.93 %. Owing to a metallurgical bond of the coating-to-substrate, the coating exhibits a good thermal shock resistance.展开更多
To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composi...To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.展开更多
The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning elect...The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.展开更多
Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of ...Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of the interface were also analyzed. The results showed that Fe/Al2O3 ceramic coating had dense struc- ture, less porosity and better binding with the substrate which was effective to prevent erosive liquor immersing into the inside of ceramic coating. Some substances that distributed homogeneously in Fe/Al2O3 ceramic coating, such as α-Al2O3, FeAlO3 and Fe3Al, could improve the corrosion resistance of this material.展开更多
The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing...The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.展开更多
A tritium permeation barrier is required in fusion blankets for the reduction of fuel loss and radiological hazard.In this study,an Al2O3/Y2O3 composite coating was prepared on 316 L stainless steel by radiofrequency ...A tritium permeation barrier is required in fusion blankets for the reduction of fuel loss and radiological hazard.In this study,an Al2O3/Y2O3 composite coating was prepared on 316 L stainless steel by radiofrequency magnetron sputtering in order to improve the tritium permeation resistance.The microstructure and the phase composition of the Al2O3/Y2O3 composite coating are observed by scanning electron microscopy,transmission electron microscopy and grazing incidence X-ray diffraction.Moreover,Auger electron spectroscopy was used to characterize the depth profiles of Al,Y and O elements.The results clearly indicate that the Al2O3/Y2O3 composite coating is fully dense and the total thickness is approximately 340 nm.The Al2O3/Y2O3 coating consists of an amorphous Al2O3 and the cubic Y2O3,in which Al,Y and O elements are homogeneously distributed in the vertical base direction.Furthermore,the deuterium permeation property of the Al2O3/Y2O3 composite coating was measured by the gas phase permeation method.The results show that the introduction of an interface and the existence of a tiny amount of micro-defects improve the deuterium resistance of the Al2O3/Y2O3 coating,and its deuterium permeation reduction factor is 536-750 at 873-973 K.Therefore,it is concluded that the Al2O3/Y2O3 co mposite coating as deuterium permeation barrier can significa ntly enha nce the deuterium permeation resistance property.展开更多
When spacecraft operate in space,most organic materials will release small molecular hydrocarbons and large molecular organic gases due to gas evolution effect under high vacuum conditions.These gases can deposit on t...When spacecraft operate in space,most organic materials will release small molecular hydrocarbons and large molecular organic gases due to gas evolution effect under high vacuum conditions.These gases can deposit on the surface of spacecraft,adversely affecting its performance.Adsorption becomes the first choice for removing such organic pollutants in the space environment.Zeolite material has a stable and dense porous structure,and has been widely used in the field of pollution adsorption.In this work,Al2O3 was deposited on the surfaces of 5A zeolite for the first time by atomic layer deposition(ALD)technology.As a result,the adsorption performance of Al2O3 coated 5A zeolite(zeolite@Al2O3)was significantly modified.The corresponding adsorption process was clarified via adsorption kinetics study.展开更多
文摘The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.
基金This research was supported by Jilin Province Science Foundation (No. 20090552).
文摘Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金the Ministerial Level Advanced Research Foundation (1040020440703)
文摘Rules and mechanism of damage in Al2O3 coatings irradiated by CO2 CW laser are studied in order to improve the ability of parts of equipment standing against the high power laser. Al2O3 coatings were sprayed by air plasma spray(APS) on the 45^# steel substrate, and then were irradiated by CO2 CW laser from 795 W/cm^2 to 31 830 W/cm^2. As the output power of the laser is increasing, its porosity is increasing and cracks are appearing and spreading quickly, And also the phase will transform from γ-Al2O3 to a-Al2O3 in the damaged areas. When the energy density is 17 507 W/cm^2, the coatings are destroyed completely. The thermal infection field on substrate is rather small. The laser energy is depleted by the phase transformation and cracks in Al2O3 coatings during the laser thermal shock.
基金Project(10JDG041) supported by the Advanced Person Fund of Jiangsu University, ChinaProject(2007CB613607) supported by the National Basic Research Program of China
文摘The synthesis of Al2O3-coated and uncoated LiMn2O4 by solid-state method and fabrication of LiMn2O4/graphite battery were described. The structure and morphology of the powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical and overcharge performances of Al2O3-coated and uncoated LiMn2O4 batteries were investigated and compared. The uncoated LiMn2O4 battery shows capacity loss of 16.5% after 200 cycles, and the coated LiMn2O4 battery only shows 12.5% after 200 cycles. The uncoated LiMn2O4 battery explodes and creates carbon, MnO, and Li2CO3 after 3C/10 V overcharged test, while the coated LiMn2O4 battery passes the test. The steadier structure, polarization of electrode and modified layer are responsible for the safety performance.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the States Key Laboratory of Solidification Processing in NWPU, China
文摘Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.
基金financially supported by the Ministry of Education of China(No.625010312)
文摘Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, scanning electron microscopy, and energy-dispersive spec-trometry, respectively. Thermal shock tests were carried out to determine the bond strength of the coating with the steel substrate. The results indicate that the coating is composed of α-A1203, α-(Fe-Cr) and Al2SiO5 as the main phases. It is found that the coating with the diluents of Al2O3-SiO2 and transition layer of Al2O3-Cr presents the hi.ghest hardness of 2270 HV0.2 and the lowest porosity of 3.93 %. Owing to a metallurgical bond of the coating-to-substrate, the coating exhibits a good thermal shock resistance.
基金Funded by the national Natural Science Foundation of China (No. 51075293)the Foundation for Development of Science and Technology of Taiyuan University of Technology,China(No.K201014)
文摘To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.
文摘The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.
文摘Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of the interface were also analyzed. The results showed that Fe/Al2O3 ceramic coating had dense struc- ture, less porosity and better binding with the substrate which was effective to prevent erosive liquor immersing into the inside of ceramic coating. Some substances that distributed homogeneously in Fe/Al2O3 ceramic coating, such as α-Al2O3, FeAlO3 and Fe3Al, could improve the corrosion resistance of this material.
文摘The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.
基金Project supported by the National Natural Science Foundation of China(51671034)。
文摘A tritium permeation barrier is required in fusion blankets for the reduction of fuel loss and radiological hazard.In this study,an Al2O3/Y2O3 composite coating was prepared on 316 L stainless steel by radiofrequency magnetron sputtering in order to improve the tritium permeation resistance.The microstructure and the phase composition of the Al2O3/Y2O3 composite coating are observed by scanning electron microscopy,transmission electron microscopy and grazing incidence X-ray diffraction.Moreover,Auger electron spectroscopy was used to characterize the depth profiles of Al,Y and O elements.The results clearly indicate that the Al2O3/Y2O3 composite coating is fully dense and the total thickness is approximately 340 nm.The Al2O3/Y2O3 coating consists of an amorphous Al2O3 and the cubic Y2O3,in which Al,Y and O elements are homogeneously distributed in the vertical base direction.Furthermore,the deuterium permeation property of the Al2O3/Y2O3 composite coating was measured by the gas phase permeation method.The results show that the introduction of an interface and the existence of a tiny amount of micro-defects improve the deuterium resistance of the Al2O3/Y2O3 coating,and its deuterium permeation reduction factor is 536-750 at 873-973 K.Therefore,it is concluded that the Al2O3/Y2O3 co mposite coating as deuterium permeation barrier can significa ntly enha nce the deuterium permeation resistance property.
基金National Natural Science Foundation of China(Grant No.51702067).
文摘When spacecraft operate in space,most organic materials will release small molecular hydrocarbons and large molecular organic gases due to gas evolution effect under high vacuum conditions.These gases can deposit on the surface of spacecraft,adversely affecting its performance.Adsorption becomes the first choice for removing such organic pollutants in the space environment.Zeolite material has a stable and dense porous structure,and has been widely used in the field of pollution adsorption.In this work,Al2O3 was deposited on the surfaces of 5A zeolite for the first time by atomic layer deposition(ALD)technology.As a result,the adsorption performance of Al2O3 coated 5A zeolite(zeolite@Al2O3)was significantly modified.The corresponding adsorption process was clarified via adsorption kinetics study.