Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the p...Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.展开更多
The existence of continually increasing concentrations of antibiotics in the environment is a serious potential hazard due to their toxicity and persistence.Unfortunately,conventional treatment techniques,such as thos...The existence of continually increasing concentrations of antibiotics in the environment is a serious potential hazard due to their toxicity and persistence.Unfortunately,conventional treatment techniques,such as those utilized in wastewater treatment plants,are not efficient for the treatment of wastewater containing antibiotic.Recently,algae-based technologies have been found to be a sustainable and promising technique for antibiotic removal.Therefore,this review aims to provide a critical summary of algae-based technologies and their important role in antibiotic wastewater treatment.Algal removal mechanisms including bioadsorption,bioaccumulation,and biodegradation are discussed in detail,with using algae-bacteria consortia for antibiotic treatment,integration of algae with other microorganisms(fungi and multiple algal species),hybrid algae-based treatment and constructed wetlands,and the factors affecting algal antibiotic degradation comprehensively described and assessed.In addition,the use of algae as a precursor for the production of biochar is highlighted,along with the modification of biochar with other materials to improve its antibiotic removal capacity and hybrid algae-based treatment with advanced oxidation processes.Furthermore,recent novel approaches for enhancing antibiotic removal,such as the use of genetic engineering to enhance the antibiotic degradation capacity of algae and the integration of algal antibiotic removal with bioelectrochemical systems are discussed.Finally,some based on the critical review,key future research perspectives are proposed.Overall,this review systematically presents the current progress in algae-mediated antibiotic removal technologies,providing some novel insights for improved alleviation of antibiotic pollution in aquatic environments。展开更多
基金Supported by the National Natural Science Foundation of China(No.30972260)~~
文摘Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.
基金the National Natural Science Foundation of China(No.52070057)the National Key Research and Development Program(No.2019YFC0408503)the National Natural Science Foundation of China(No.51961165104).
文摘The existence of continually increasing concentrations of antibiotics in the environment is a serious potential hazard due to their toxicity and persistence.Unfortunately,conventional treatment techniques,such as those utilized in wastewater treatment plants,are not efficient for the treatment of wastewater containing antibiotic.Recently,algae-based technologies have been found to be a sustainable and promising technique for antibiotic removal.Therefore,this review aims to provide a critical summary of algae-based technologies and their important role in antibiotic wastewater treatment.Algal removal mechanisms including bioadsorption,bioaccumulation,and biodegradation are discussed in detail,with using algae-bacteria consortia for antibiotic treatment,integration of algae with other microorganisms(fungi and multiple algal species),hybrid algae-based treatment and constructed wetlands,and the factors affecting algal antibiotic degradation comprehensively described and assessed.In addition,the use of algae as a precursor for the production of biochar is highlighted,along with the modification of biochar with other materials to improve its antibiotic removal capacity and hybrid algae-based treatment with advanced oxidation processes.Furthermore,recent novel approaches for enhancing antibiotic removal,such as the use of genetic engineering to enhance the antibiotic degradation capacity of algae and the integration of algal antibiotic removal with bioelectrochemical systems are discussed.Finally,some based on the critical review,key future research perspectives are proposed.Overall,this review systematically presents the current progress in algae-mediated antibiotic removal technologies,providing some novel insights for improved alleviation of antibiotic pollution in aquatic environments。