The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot...The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot absolutely diminish the ASR of mortar bars with the low-alkali cement and a highly reactive aggregate. But the expansion rate and the deleterious expansion of the mortar bar are mostly reduced with increasing composite mineral admixture. The influence of mineral admixtures on the fluidity of the paste and the strength of the mortar is also studied.展开更多
The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accele...The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accelerates the alkali silica reaction to some extent, whereas calcium salt ingredient of anti-freezing admixture reduces the expansion of alkali silica reaction caused by high alkali cement. It is found that the addition of the fly ash considerably suppresses the expansion of alkali silica reaction induced by the anti-freezing admixtures.展开更多
The effect of fly ash on controlling alkail-silica rection (ASR) in simudated alkali solution was studied. The expausion of mortar bars and the content of Ca( OH)2 in cement paste cured at 80 °G for 91 d were...The effect of fly ash on controlling alkail-silica rection (ASR) in simudated alkali solution was studied. The expausion of mortar bars and the content of Ca( OH)2 in cement paste cured at 80 °G for 91 d were measured. Traasmission electron microscopy (TEM) and high-resolution transmission electron microscot9 (HRTEM) were employed to study the microstructure of C-S-H. TEM/ energy dispersive spectroscopy (EDS) leas then used to determine the composition of C-S-H. The pore structure of the paste was analyzed by mercury intntsion porosimetry (MIP). The results show that the contents of fly ash of 30% and 45% can well inhibit ASR. And the content of Ca(OH) 2 decreases with the increase of fly ash. That fly ash reacted with Ca(OH)2 to produce C-S-H with a low Ca/Si molar ratio could bind more Na^+ and K^+ ious, and produce a reduction in the amount of soluble alkali available for ASR. At the same time, the C- S- H produced by pozzolanic reaction converted large pores to snudler ones ( gel pores smaller than 10 nm ) to deusify the pore structure. Perhaps that could inhibit alkali trausport to aggregate for ASR.展开更多
The influence of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃ is studied. The results show that silica, slag and fly ash may inhibit alkali-silica reaction only under suitable c...The influence of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃ is studied. The results show that silica, slag and fly ash may inhibit alkali-silica reaction only under suitable content. When the content is less than 10%, silica fume does not markedly influence the expansion of alkali- silica reaction. When the content is 15%-20%, silica fume only may delay the expansion of alkali-silica reaction. When the content is 30%-70%, slag may only delay the expansion of alkali-silica reaction, but cannot inhibit the expansion of alkali-silica reaction. When the content is 10%, fly ash does not markedly influence the expansion of alkali-silica reaction. When the content is 20%-30%, fly ash may only delay the expansion of alkali-silica reaction, but cannot inhibit the expansion of alkali-silica reaction. When the content is over 50%, it is possible that fly ash can inhibit effectively alkali-silica reaction.展开更多
The effect of the composite of natural zeolite and fly ash on alkali-silica reaction (ASR) was studied with natural alkali-reactive aggregate and quartz glass aggregate respectively.The expansive experiment of mortar ...The effect of the composite of natural zeolite and fly ash on alkali-silica reaction (ASR) was studied with natural alkali-reactive aggregate and quartz glass aggregate respectively.The expansive experiment of mortar bar and concrete prism was completed.The results show that ASR can be suppressed effectively by the composite of natural zeolite and fly ash.展开更多
On the base of the influence rule of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃, the mechanism of the effect of mineral admixtures on alkali-silica reaction is studied further...On the base of the influence rule of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃, the mechanism of the effect of mineral admixtures on alkali-silica reaction is studied further in the paper. The results show that the effects of mineral admixtures on alkali-silica reaction are mainly chemistry effect and surface physichemistry effect. Under suitable condition, the chemistry effect may make alkali-silica reaction to be inhibited effectively, but the physichemistry effect only make alkali-silica reaction to be delayed. The chemistry effect and the physichemistry effect of minerals admixture are relative to the content of Ca(OH)2 in system. Under the condition that there is a large quantity of Ca(OH)2, mineral admixture cannot inhibit alkali-silica reaction effectively. Only when Ca(OH)2 in the system is very less, it is possible that mineral admixture inhibits alkali-silica reaction effectively.展开更多
A high alkali reactive aggregate zeolitization perlite was used to test the long term effectiveness of LiOH in inhibiting alkali silica reaction.In this paper,the rigorous conditions were designed that the mortar b...A high alkali reactive aggregate zeolitization perlite was used to test the long term effectiveness of LiOH in inhibiting alkali silica reaction.In this paper,the rigorous conditions were designed that the mortar bars had been cured at 80℃ for 3 years after autoclaved 24 hours at 150℃.Under this condition,LiOH was able to inhibit the alkali silica reaction long term effectiveness.Not only the relationship between the molar ratio of n(Li)/(Na) and the alkali contents in systems was established, but also the governing mechanism of such effects was also studied by SEM.展开更多
A comparative study of amorphous and crystalline forms of commercial aluminum hydroxides as inhibitors of alkalisilica reactions in Portland cement mortars has been performed. It was found that at dosages of 1% to 3%,...A comparative study of amorphous and crystalline forms of commercial aluminum hydroxides as inhibitors of alkalisilica reactions in Portland cement mortars has been performed. It was found that at dosages of 1% to 3%, amorphous aluminum hydroxide can efficiently inhibit alkali-silica expansion of Portland cement compositions. High inhibiting activity of amorphous Al(OH)3 additives may be explained by their ability to actively bind Ca(OH)2 formed by the hydration of silicate phases of cement, to form ettringite (with participation of gypsum). Crystalline Al(OH)3 additives that do not possess the ability to interact with Ca(OH)2 even after additional grinding, however, demonstrate week properties to inhibit alkali-silica expansion. This may indicate that the inhibitory effect of Al(OH)3 at least—partly, may be given by its influence on the concentration of Al3+ ions in the pore solution. Some expansion of the samples with admixtures of Al(OH)3 observed during the alkaline expansion accelerated test procedure is not associated with the formation of ettringite and is only due to alkali-silicate reactions.展开更多
Study of sulfate resistance of mortars with aluminum- and iron-bearing admixtures (Al(OH)3, Al2(SO4)3, FeSO4, Fe2(SO4)3) in conditions close to those established in ASTM C 1012, and the study of the mitigation effect ...Study of sulfate resistance of mortars with aluminum- and iron-bearing admixtures (Al(OH)3, Al2(SO4)3, FeSO4, Fe2(SO4)3) in conditions close to those established in ASTM C 1012, and the study of the mitigation effect of these admixtures on alkali-silica reaction in accordance with accelerated “mortar bar” test ( GOST 8269.0, ASTM C 1260) were performed. Iron (II) and (III) sulfates show ability for mitigation alkali-silica reaction, while also, in contrast with Al-bearing substances, do not induce the drastic reducing of the initial setting time and do not promote the progress of sulfate corrosion. Compared with FeSO4, iron (III) sulfate has moderate deleterious impact on the early strength of cement paste and can be of interest alone as an inhibitor of ASR. Iron (II) sulfate may be used together with aluminum sulfate to offset the accelerating effect of the latter on the setting of cement paste and to reduce a risk of sulfate corrosion. During prolonged water storage, the mortar elongation and secondary ettringite formation do not occur, even when Al2(SO4)3 is available. Therefore, the investigated admixtures cannot act as agents of internal sulfate attack, however, Al2(SO4)3 can enhance the outer sulfate attack.展开更多
Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study ...Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study had a total Na2Oeq of 4.32. Mortar-bar expansion decreased as pozzolan content in the cement increased. The highest expansion was recorded for reference bars with no pozzolan, reaching a maximum of 0.35% at 42 days whilst the expansion was reduced by between 42.5% and 107.8% at 14 days and between 9.4% and 16.4% at 84 days with increasing calcined clay pozzolan content. Mortar bars with 25% pozzolan were the least expansive recording expansion less than 0.1% at all test ages. X-ray diffractometry of the hydrated blended cement paste powders showed the formation of stable calcium silicates in increasing quantities whilst the presence of expansive alkali-silica gel, responsible for ASR expansion, decreased as pozzolan content increased. The study confirms that calcined clay pozzolan has an influence on ASR in mortar bars and causes a significant reduction in expansion at a replacement level of 25%.展开更多
A silica fume, precipitated silica, metakaolin and siliceous fly ash behavior as constituents of mortars was studied, while mortar samples have been tested for long-term alkali-silica reaction expansion in accordance ...A silica fume, precipitated silica, metakaolin and siliceous fly ash behavior as constituents of mortars was studied, while mortar samples have been tested for long-term alkali-silica reaction expansion in accordance to the GOST 8269.0 specification. Solid-state 29Si-MAS NMR spectroscopy and thermogravimetric analysis were used to describe Portland cement hydration, supplementary cementitious material pozzolanic reaction and to establish a structure of products of those processes. It was found that long-term test conditions, in contrast to the accelerated test, do not affect the composition of products formed too much, compared to normal conditions. This allows results obtained with long-term test to be expected as more relevant in terms of predicting of supplementary cementitious materials inhibiting properties.展开更多
An ability of aluminum-bearing substances-amorphous aluminum hydroxide, aluminum sulphate and basic aluminum sulphate to mitigate alkali-silica reactions in Portland cement mortars has been studied. At equivalent dosa...An ability of aluminum-bearing substances-amorphous aluminum hydroxide, aluminum sulphate and basic aluminum sulphate to mitigate alkali-silica reactions in Portland cement mortars has been studied. At equivalent dosages in terms of Al2O3, these substances are ranged in the following order in respect of inhibiting effect: Al(OH)1.78(SO4)0.61 ≥ Al2(SO4)3 > Al(OH)3. It is found that the plasticizing agents of the main types used in cement compositions have no influence on the inhibiting effect of aluminum-bearing admixtures. To control the setting time of cement paste, iron(II) sulphate may be used for partial substitution of Al2SO4·18H2O, and this operation is not influence on the results of ASR expansion test.展开更多
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s...Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechan...This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material.The concept of ASR and the mechanism of expansion are first outlined,and the stateof-the-art of modeling for ASR,the focus of the paper,is then presented in detail.The modeling includes theoretical approaches,meso-and macroscopic models for ASR analysis.The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate.Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale.The macroscopic models,chemomechanical coupling models,have been generally dcveloped by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive,and were applied to reproduce and predict the long-term behavior of struetures suffering from ASR.Finally,a conclusion and discussion of the modcling are given.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te...High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.展开更多
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
文摘The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot absolutely diminish the ASR of mortar bars with the low-alkali cement and a highly reactive aggregate. But the expansion rate and the deleterious expansion of the mortar bar are mostly reduced with increasing composite mineral admixture. The influence of mineral admixtures on the fluidity of the paste and the strength of the mortar is also studied.
文摘The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accelerates the alkali silica reaction to some extent, whereas calcium salt ingredient of anti-freezing admixture reduces the expansion of alkali silica reaction caused by high alkali cement. It is found that the addition of the fly ash considerably suppresses the expansion of alkali silica reaction induced by the anti-freezing admixtures.
基金Founded bythe National Basic Research Programof China"973"(No.2001CB610706)
文摘The effect of fly ash on controlling alkail-silica rection (ASR) in simudated alkali solution was studied. The expausion of mortar bars and the content of Ca( OH)2 in cement paste cured at 80 °G for 91 d were measured. Traasmission electron microscopy (TEM) and high-resolution transmission electron microscot9 (HRTEM) were employed to study the microstructure of C-S-H. TEM/ energy dispersive spectroscopy (EDS) leas then used to determine the composition of C-S-H. The pore structure of the paste was analyzed by mercury intntsion porosimetry (MIP). The results show that the contents of fly ash of 30% and 45% can well inhibit ASR. And the content of Ca(OH) 2 decreases with the increase of fly ash. That fly ash reacted with Ca(OH)2 to produce C-S-H with a low Ca/Si molar ratio could bind more Na^+ and K^+ ious, and produce a reduction in the amount of soluble alkali available for ASR. At the same time, the C- S- H produced by pozzolanic reaction converted large pores to snudler ones ( gel pores smaller than 10 nm ) to deusify the pore structure. Perhaps that could inhibit alkali trausport to aggregate for ASR.
文摘The influence of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃ is studied. The results show that silica, slag and fly ash may inhibit alkali-silica reaction only under suitable content. When the content is less than 10%, silica fume does not markedly influence the expansion of alkali- silica reaction. When the content is 15%-20%, silica fume only may delay the expansion of alkali-silica reaction. When the content is 30%-70%, slag may only delay the expansion of alkali-silica reaction, but cannot inhibit the expansion of alkali-silica reaction. When the content is 10%, fly ash does not markedly influence the expansion of alkali-silica reaction. When the content is 20%-30%, fly ash may only delay the expansion of alkali-silica reaction, but cannot inhibit the expansion of alkali-silica reaction. When the content is over 50%, it is possible that fly ash can inhibit effectively alkali-silica reaction.
文摘The effect of the composite of natural zeolite and fly ash on alkali-silica reaction (ASR) was studied with natural alkali-reactive aggregate and quartz glass aggregate respectively.The expansive experiment of mortar bar and concrete prism was completed.The results show that ASR can be suppressed effectively by the composite of natural zeolite and fly ash.
文摘On the base of the influence rule of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃, the mechanism of the effect of mineral admixtures on alkali-silica reaction is studied further in the paper. The results show that the effects of mineral admixtures on alkali-silica reaction are mainly chemistry effect and surface physichemistry effect. Under suitable condition, the chemistry effect may make alkali-silica reaction to be inhibited effectively, but the physichemistry effect only make alkali-silica reaction to be delayed. The chemistry effect and the physichemistry effect of minerals admixture are relative to the content of Ca(OH)2 in system. Under the condition that there is a large quantity of Ca(OH)2, mineral admixture cannot inhibit alkali-silica reaction effectively. Only when Ca(OH)2 in the system is very less, it is possible that mineral admixture inhibits alkali-silica reaction effectively.
文摘A high alkali reactive aggregate zeolitization perlite was used to test the long term effectiveness of LiOH in inhibiting alkali silica reaction.In this paper,the rigorous conditions were designed that the mortar bars had been cured at 80℃ for 3 years after autoclaved 24 hours at 150℃.Under this condition,LiOH was able to inhibit the alkali silica reaction long term effectiveness.Not only the relationship between the molar ratio of n(Li)/(Na) and the alkali contents in systems was established, but also the governing mechanism of such effects was also studied by SEM.
文摘A comparative study of amorphous and crystalline forms of commercial aluminum hydroxides as inhibitors of alkalisilica reactions in Portland cement mortars has been performed. It was found that at dosages of 1% to 3%, amorphous aluminum hydroxide can efficiently inhibit alkali-silica expansion of Portland cement compositions. High inhibiting activity of amorphous Al(OH)3 additives may be explained by their ability to actively bind Ca(OH)2 formed by the hydration of silicate phases of cement, to form ettringite (with participation of gypsum). Crystalline Al(OH)3 additives that do not possess the ability to interact with Ca(OH)2 even after additional grinding, however, demonstrate week properties to inhibit alkali-silica expansion. This may indicate that the inhibitory effect of Al(OH)3 at least—partly, may be given by its influence on the concentration of Al3+ ions in the pore solution. Some expansion of the samples with admixtures of Al(OH)3 observed during the alkaline expansion accelerated test procedure is not associated with the formation of ettringite and is only due to alkali-silicate reactions.
文摘Study of sulfate resistance of mortars with aluminum- and iron-bearing admixtures (Al(OH)3, Al2(SO4)3, FeSO4, Fe2(SO4)3) in conditions close to those established in ASTM C 1012, and the study of the mitigation effect of these admixtures on alkali-silica reaction in accordance with accelerated “mortar bar” test ( GOST 8269.0, ASTM C 1260) were performed. Iron (II) and (III) sulfates show ability for mitigation alkali-silica reaction, while also, in contrast with Al-bearing substances, do not induce the drastic reducing of the initial setting time and do not promote the progress of sulfate corrosion. Compared with FeSO4, iron (III) sulfate has moderate deleterious impact on the early strength of cement paste and can be of interest alone as an inhibitor of ASR. Iron (II) sulfate may be used together with aluminum sulfate to offset the accelerating effect of the latter on the setting of cement paste and to reduce a risk of sulfate corrosion. During prolonged water storage, the mortar elongation and secondary ettringite formation do not occur, even when Al2(SO4)3 is available. Therefore, the investigated admixtures cannot act as agents of internal sulfate attack, however, Al2(SO4)3 can enhance the outer sulfate attack.
文摘Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study had a total Na2Oeq of 4.32. Mortar-bar expansion decreased as pozzolan content in the cement increased. The highest expansion was recorded for reference bars with no pozzolan, reaching a maximum of 0.35% at 42 days whilst the expansion was reduced by between 42.5% and 107.8% at 14 days and between 9.4% and 16.4% at 84 days with increasing calcined clay pozzolan content. Mortar bars with 25% pozzolan were the least expansive recording expansion less than 0.1% at all test ages. X-ray diffractometry of the hydrated blended cement paste powders showed the formation of stable calcium silicates in increasing quantities whilst the presence of expansive alkali-silica gel, responsible for ASR expansion, decreased as pozzolan content increased. The study confirms that calcined clay pozzolan has an influence on ASR in mortar bars and causes a significant reduction in expansion at a replacement level of 25%.
文摘A silica fume, precipitated silica, metakaolin and siliceous fly ash behavior as constituents of mortars was studied, while mortar samples have been tested for long-term alkali-silica reaction expansion in accordance to the GOST 8269.0 specification. Solid-state 29Si-MAS NMR spectroscopy and thermogravimetric analysis were used to describe Portland cement hydration, supplementary cementitious material pozzolanic reaction and to establish a structure of products of those processes. It was found that long-term test conditions, in contrast to the accelerated test, do not affect the composition of products formed too much, compared to normal conditions. This allows results obtained with long-term test to be expected as more relevant in terms of predicting of supplementary cementitious materials inhibiting properties.
文摘An ability of aluminum-bearing substances-amorphous aluminum hydroxide, aluminum sulphate and basic aluminum sulphate to mitigate alkali-silica reactions in Portland cement mortars has been studied. At equivalent dosages in terms of Al2O3, these substances are ranged in the following order in respect of inhibiting effect: Al(OH)1.78(SO4)0.61 ≥ Al2(SO4)3 > Al(OH)3. It is found that the plasticizing agents of the main types used in cement compositions have no influence on the inhibiting effect of aluminum-bearing admixtures. To control the setting time of cement paste, iron(II) sulphate may be used for partial substitution of Al2SO4·18H2O, and this operation is not influence on the results of ASR expansion test.
基金financially supported by the National Natural Science Foundation of China(No.5217042069)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)(No.YESS20200103)the Fundamental Research Funds for the Central Universities(No.265QZ2022004)。
文摘Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金The authors acknowledge the support of the National Key Basic Research Program of China(Nos.2010CB731504 and 2011CB013602)the research funding from the State Key Laboratory of Hydroscience and Engineering,Tsinghua University(No.2010-TC-1).
文摘This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material.The concept of ASR and the mechanism of expansion are first outlined,and the stateof-the-art of modeling for ASR,the focus of the paper,is then presented in detail.The modeling includes theoretical approaches,meso-and macroscopic models for ASR analysis.The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate.Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale.The macroscopic models,chemomechanical coupling models,have been generally dcveloped by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive,and were applied to reproduce and predict the long-term behavior of struetures suffering from ASR.Finally,a conclusion and discussion of the modcling are given.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金the staff at Beamline (BL08U1-A and BL11B)of the Shanghai Synchrotron Radiation Facility (SSRF)the support from the National Key Research&Development Program of China (2022YFB3803700)+2 种基金the National Natural Science Foundation of China (52171186)the support through the Overseas Outstanding Youth Fund and Shanghai Pujiang Talent Project (21PJ1408500)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.