期刊文献+
共找到131,690篇文章
< 1 2 250 >
每页显示 20 50 100
EFFECT OF COMPOSITE MINERAL ADMIXTURES ON RESTRAINING ALKALI-SILICA REACTION 被引量:1
1
作者 高培伟 卢小琳 +2 位作者 闫亚楠 董波 李小燕 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期120-124,共5页
The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot... The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot absolutely diminish the ASR of mortar bars with the low-alkali cement and a highly reactive aggregate. But the expansion rate and the deleterious expansion of the mortar bar are mostly reduced with increasing composite mineral admixture. The influence of mineral admixtures on the fluidity of the paste and the strength of the mortar is also studied. 展开更多
关键词 composite mineral admixtures expansion and microcrack alkali-silica reaction FLUIDITY
下载PDF
Effect of Anti-freezing Admixtures on Alkali-silica Reaction in Mortars 被引量:5
2
作者 柳俊哲 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第2期80-82,共3页
The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accele... The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accelerates the alkali silica reaction to some extent, whereas calcium salt ingredient of anti-freezing admixture reduces the expansion of alkali silica reaction caused by high alkali cement. It is found that the addition of the fly ash considerably suppresses the expansion of alkali silica reaction induced by the anti-freezing admixtures. 展开更多
关键词 anti-freezing admixture alkali-silica reaction reactive aggregates fly ash
下载PDF
Effect of Pozzolanic Reaction Products on Alkali-silica Reaction
3
作者 魏风艳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期168-171,共4页
The effect of fly ash on controlling alkail-silica rection (ASR) in simudated alkali solution was studied. The expausion of mortar bars and the content of Ca( OH)2 in cement paste cured at 80 °G for 91 d were... The effect of fly ash on controlling alkail-silica rection (ASR) in simudated alkali solution was studied. The expausion of mortar bars and the content of Ca( OH)2 in cement paste cured at 80 °G for 91 d were measured. Traasmission electron microscopy (TEM) and high-resolution transmission electron microscot9 (HRTEM) were employed to study the microstructure of C-S-H. TEM/ energy dispersive spectroscopy (EDS) leas then used to determine the composition of C-S-H. The pore structure of the paste was analyzed by mercury intntsion porosimetry (MIP). The results show that the contents of fly ash of 30% and 45% can well inhibit ASR. And the content of Ca(OH) 2 decreases with the increase of fly ash. That fly ash reacted with Ca(OH)2 to produce C-S-H with a low Ca/Si molar ratio could bind more Na^+ and K^+ ious, and produce a reduction in the amount of soluble alkali available for ASR. At the same time, the C- S- H produced by pozzolanic reaction converted large pores to snudler ones ( gel pores smaller than 10 nm ) to deusify the pore structure. Perhaps that could inhibit alkali trausport to aggregate for ASR. 展开更多
关键词 ALKALI Ca/ Si molar ratio C-S-H alkali-silica reaction
下载PDF
Effect of Mineral Admixtures on Alkali-Silica Reaction
4
作者 张承志 WANG Aiqin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期16-19,共4页
The influence of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃ is studied. The results show that silica, slag and fly ash may inhibit alkali-silica reaction only under suitable c... The influence of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃ is studied. The results show that silica, slag and fly ash may inhibit alkali-silica reaction only under suitable content. When the content is less than 10%, silica fume does not markedly influence the expansion of alkali- silica reaction. When the content is 15%-20%, silica fume only may delay the expansion of alkali-silica reaction. When the content is 30%-70%, slag may only delay the expansion of alkali-silica reaction, but cannot inhibit the expansion of alkali-silica reaction. When the content is 10%, fly ash does not markedly influence the expansion of alkali-silica reaction. When the content is 20%-30%, fly ash may only delay the expansion of alkali-silica reaction, but cannot inhibit the expansion of alkali-silica reaction. When the content is over 50%, it is possible that fly ash can inhibit effectively alkali-silica reaction. 展开更多
关键词 mineral admixture alkali-silica reaction EFFECTIVENESS
下载PDF
Effect of the Composite of Natural Zeolite and Fly Ash on Alkali-Silica Reaction
5
作者 封孝信 FENGNai-qian HANDong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第4期93-96,共4页
The effect of the composite of natural zeolite and fly ash on alkali-silica reaction (ASR) was studied with natural alkali-reactive aggregate and quartz glass aggregate respectively.The expansive experiment of mortar ... The effect of the composite of natural zeolite and fly ash on alkali-silica reaction (ASR) was studied with natural alkali-reactive aggregate and quartz glass aggregate respectively.The expansive experiment of mortar bar and concrete prism was completed.The results show that ASR can be suppressed effectively by the composite of natural zeolite and fly ash. 展开更多
关键词 natural zeolite fly ash alkali-silica reaction (ASR)
下载PDF
The Mechanism of the Eeffect of Mineral Admixtures on the Expansion of Aalkali-silica Reaction
6
作者 王爱勤 张承志 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期376-380,共5页
On the base of the influence rule of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃, the mechanism of the effect of mineral admixtures on alkali-silica reaction is studied further... On the base of the influence rule of silica fume, slag and fly ash on alkali-silica reaction under the condition of 70 ℃, the mechanism of the effect of mineral admixtures on alkali-silica reaction is studied further in the paper. The results show that the effects of mineral admixtures on alkali-silica reaction are mainly chemistry effect and surface physichemistry effect. Under suitable condition, the chemistry effect may make alkali-silica reaction to be inhibited effectively, but the physichemistry effect only make alkali-silica reaction to be delayed. The chemistry effect and the physichemistry effect of minerals admixture are relative to the content of Ca(OH)2 in system. Under the condition that there is a large quantity of Ca(OH)2, mineral admixture cannot inhibit alkali-silica reaction effectively. Only when Ca(OH)2 in the system is very less, it is possible that mineral admixture inhibits alkali-silica reaction effectively. 展开更多
关键词 mineral admixture alkali-silica reaction MECHANISM
下载PDF
Alkali-Silica Reaction Inhibited by LiOH and Its Mechanism 被引量:2
7
作者 莫祥银 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第1期13-16,共4页
A high alkali reactive aggregate zeolitization perlite was used to test the long term effectiveness of LiOH in inhibiting alkali silica reaction.In this paper,the rigorous conditions were designed that the mortar b... A high alkali reactive aggregate zeolitization perlite was used to test the long term effectiveness of LiOH in inhibiting alkali silica reaction.In this paper,the rigorous conditions were designed that the mortar bars had been cured at 80℃ for 3 years after autoclaved 24 hours at 150℃.Under this condition,LiOH was able to inhibit the alkali silica reaction long term effectiveness.Not only the relationship between the molar ratio of n(Li)/(Na) and the alkali contents in systems was established, but also the governing mechanism of such effects was also studied by SEM. 展开更多
关键词 lithium compounds alkali silica reaction long term performance MECHANISM
下载PDF
Efficacy of Aluminum Hydroxides as Inhibitors of Alkali-Silica Reactions 被引量:2
8
作者 Alexey Brykov Anna Anisimova 《Materials Sciences and Applications》 2013年第12期1-6,共6页
A comparative study of amorphous and crystalline forms of commercial aluminum hydroxides as inhibitors of alkalisilica reactions in Portland cement mortars has been performed. It was found that at dosages of 1% to 3%,... A comparative study of amorphous and crystalline forms of commercial aluminum hydroxides as inhibitors of alkalisilica reactions in Portland cement mortars has been performed. It was found that at dosages of 1% to 3%, amorphous aluminum hydroxide can efficiently inhibit alkali-silica expansion of Portland cement compositions. High inhibiting activity of amorphous Al(OH)3 additives may be explained by their ability to actively bind Ca(OH)2 formed by the hydration of silicate phases of cement, to form ettringite (with participation of gypsum). Crystalline Al(OH)3 additives that do not possess the ability to interact with Ca(OH)2 even after additional grinding, however, demonstrate week properties to inhibit alkali-silica expansion. This may indicate that the inhibitory effect of Al(OH)3 at least—partly, may be given by its influence on the concentration of Al3+ ions in the pore solution. Some expansion of the samples with admixtures of Al(OH)3 observed during the alkaline expansion accelerated test procedure is not associated with the formation of ettringite and is only due to alkali-silicate reactions. 展开更多
关键词 Aluminum HYDROXIDE alkali-silica reaction INHIBITION Portland CEMENT Concrete
下载PDF
The Impact of Aluminum- and Iron-Bearing Admixtures on the Resistance of Portland Cement Mortars to Alkali-Silica Reaction and Sulfate Attack 被引量:1
9
作者 Alexey Brykov Anna Anisimova +2 位作者 Natalya Rozenkova Mohammed Hadi Maxim Mokeev 《Materials Sciences and Applications》 2015年第6期539-548,共10页
Study of sulfate resistance of mortars with aluminum- and iron-bearing admixtures (Al(OH)3, Al2(SO4)3, FeSO4, Fe2(SO4)3) in conditions close to those established in ASTM C 1012, and the study of the mitigation effect ... Study of sulfate resistance of mortars with aluminum- and iron-bearing admixtures (Al(OH)3, Al2(SO4)3, FeSO4, Fe2(SO4)3) in conditions close to those established in ASTM C 1012, and the study of the mitigation effect of these admixtures on alkali-silica reaction in accordance with accelerated “mortar bar” test ( GOST 8269.0, ASTM C 1260) were performed. Iron (II) and (III) sulfates show ability for mitigation alkali-silica reaction, while also, in contrast with Al-bearing substances, do not induce the drastic reducing of the initial setting time and do not promote the progress of sulfate corrosion. Compared with FeSO4, iron (III) sulfate has moderate deleterious impact on the early strength of cement paste and can be of interest alone as an inhibitor of ASR. Iron (II) sulfate may be used together with aluminum sulfate to offset the accelerating effect of the latter on the setting of cement paste and to reduce a risk of sulfate corrosion. During prolonged water storage, the mortar elongation and secondary ettringite formation do not occur, even when Al2(SO4)3 is available. Therefore, the investigated admixtures cannot act as agents of internal sulfate attack, however, Al2(SO4)3 can enhance the outer sulfate attack. 展开更多
关键词 alkali-silica reaction SULFATE Attack Mitigation ALUMINUM SULFATE IRON SULFATE Portland Cement
下载PDF
Calcined Clay Pozzolan as an Admixture to Mitigate the Alkali-Silica Reaction in Concrete
10
作者 James Sarfo-Ansah Eugene Atiemo +2 位作者 Kwabena Appiah Boakye Delali Adjei Albert A. Adjaottor 《Journal of Materials Science and Chemical Engineering》 2014年第5期20-26,共7页
Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study ... Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study had a total Na2Oeq of 4.32. Mortar-bar expansion decreased as pozzolan content in the cement increased. The highest expansion was recorded for reference bars with no pozzolan, reaching a maximum of 0.35% at 42 days whilst the expansion was reduced by between 42.5% and 107.8% at 14 days and between 9.4% and 16.4% at 84 days with increasing calcined clay pozzolan content. Mortar bars with 25% pozzolan were the least expansive recording expansion less than 0.1% at all test ages. X-ray diffractometry of the hydrated blended cement paste powders showed the formation of stable calcium silicates in increasing quantities whilst the presence of expansive alkali-silica gel, responsible for ASR expansion, decreased as pozzolan content increased. The study confirms that calcined clay pozzolan has an influence on ASR in mortar bars and causes a significant reduction in expansion at a replacement level of 25%. 展开更多
关键词 CALCINED CLAY POZZOLAN alkali-silica reaction Expansion Sodium SILICATE gel Calcium SILICATES
下载PDF
Ultrafine Silica Additives Behavior during Alkali-Silica Reaction Long-Term Expansion Test
11
作者 Alexey Brykov Mikhail Voronkov Maxim Mokeev 《Materials Sciences and Applications》 2014年第2期66-72,共7页
A silica fume, precipitated silica, metakaolin and siliceous fly ash behavior as constituents of mortars was studied, while mortar samples have been tested for long-term alkali-silica reaction expansion in accordance ... A silica fume, precipitated silica, metakaolin and siliceous fly ash behavior as constituents of mortars was studied, while mortar samples have been tested for long-term alkali-silica reaction expansion in accordance to the GOST 8269.0 specification. Solid-state 29Si-MAS NMR spectroscopy and thermogravimetric analysis were used to describe Portland cement hydration, supplementary cementitious material pozzolanic reaction and to establish a structure of products of those processes. It was found that long-term test conditions, in contrast to the accelerated test, do not affect the composition of products formed too much, compared to normal conditions. This allows results obtained with long-term test to be expected as more relevant in terms of predicting of supplementary cementitious materials inhibiting properties. 展开更多
关键词 alkali-silica reaction SUPPLEMENTARY Cementitious Materials MAS NMR THERMOGRAVIMETRIC Analysis Pozzolanic reaction
下载PDF
The Mitigation of Alkali-Silica Reactions by Aluminum-Bearing Substances
12
作者 Alexey Brykov Anna Anisimova Natalia Rozenkova 《Materials Sciences and Applications》 2014年第6期363-367,共5页
An ability of aluminum-bearing substances-amorphous aluminum hydroxide, aluminum sulphate and basic aluminum sulphate to mitigate alkali-silica reactions in Portland cement mortars has been studied. At equivalent dosa... An ability of aluminum-bearing substances-amorphous aluminum hydroxide, aluminum sulphate and basic aluminum sulphate to mitigate alkali-silica reactions in Portland cement mortars has been studied. At equivalent dosages in terms of Al2O3, these substances are ranged in the following order in respect of inhibiting effect: Al(OH)1.78(SO4)0.61 ≥ Al2(SO4)3 > Al(OH)3. It is found that the plasticizing agents of the main types used in cement compositions have no influence on the inhibiting effect of aluminum-bearing admixtures. To control the setting time of cement paste, iron(II) sulphate may be used for partial substitution of Al2SO4·18H2O, and this operation is not influence on the results of ASR expansion test. 展开更多
关键词 alkali-silica reaction MITIGATION ALUMINUM HYDROXIDE ALUMINUM Sulphate Basic ALUMINUM Sulphate Concrete Iron(II) Sulphate Portland Cement SUPERPLASTICIZERS Water-Reducing ADMIXTURES
下载PDF
Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction
13
作者 Shaorou Ke Yajing Zhao +6 位作者 Xin Min Yanghong Li Ruiyu Mi Yangai Liu Xiaowen Wu Minghao Fang Zhaohui Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期182-190,共9页
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s... Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts. 展开更多
关键词 hydrogen evolution reaction ultralow platinum in-situ synthesis ULTRASOUND
下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
14
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
下载PDF
Modeling of alkali-silica reaction in concrete:a review 被引量:2
15
作者 J.W.PAN Y.T.FENG +3 位作者 J.T.WANG Q.C.SUN C.H.ZHANG D.R.J.OWEN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第1期1-18,共18页
This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechan... This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material.The concept of ASR and the mechanism of expansion are first outlined,and the stateof-the-art of modeling for ASR,the focus of the paper,is then presented in detail.The modeling includes theoretical approaches,meso-and macroscopic models for ASR analysis.The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate.Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale.The macroscopic models,chemomechanical coupling models,have been generally dcveloped by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive,and were applied to reproduce and predict the long-term behavior of struetures suffering from ASR.Finally,a conclusion and discussion of the modcling are given. 展开更多
关键词 alkali-silica reaction(ASR) modeling CONCRETE MESOSCOPIC MACROSCOPIC
原文传递
Reaction视频中用户弹幕信息交互行为的情感反应生成机理研究
16
作者 叶许婕 赵宇翔 +2 位作者 张妍 李金昊 Preben Hansen 《信息资源管理学报》 CSSCI 2024年第2期104-120,共17页
深入挖掘Reaction视频中弹幕信息交互行为的情感反应机理有助于理解用户弹幕创作背后的情感生成原因及情感变化过程。本文基于情感反应模型,利用定向内容分析法对哔哩哔哩网站中11个热门视频的弹幕信息资源、视频内容以及reactor反应情... 深入挖掘Reaction视频中弹幕信息交互行为的情感反应机理有助于理解用户弹幕创作背后的情感生成原因及情感变化过程。本文基于情感反应模型,利用定向内容分析法对哔哩哔哩网站中11个热门视频的弹幕信息资源、视频内容以及reactor反应情况展开编码研究,构建了Reaction视频中用户弹幕信息交互行为的情感反应生成机理模型。研究发现,Reaction视频弹幕信息交互行为中的情感反应生成机理总体上遵循“信息刺激-情感反应”的路径,信息刺激有时会独立唤醒情绪或特定情感态度,有时也会通过唤醒特定情感态度进而影响情绪或内化情感态度的生成。该模型有助于提升情感反应理论在计算机协助交流中的情境化探索,也将为社交媒体中用户与信息交互提供优化建议。 展开更多
关键词 reaction视频 弹幕 用户信息交互 情感反应模型 定向内容分析
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
17
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY reaction barrier
下载PDF
Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction 被引量:1
18
作者 Saihang Zhang Senchuan Huang +8 位作者 Fengzhan Sun Yinghui Li Li Ren Hao Xu Zhao Li Yifei Liu Wei Li Lina Chong Jianxin Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期194-201,I0005,共9页
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te... High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts. 展开更多
关键词 Oxygen evolution reaction Nickel-iron bi-metal alkoxide Lattice oxygen-mediated reaction mechanism Alkaline electrolysis ELECTROCATALYSTS
下载PDF
Boric Acid-Assisted Pyrolysis for High-Loading Single-Atom Catalysts to Boost Oxygen Reduction Reaction in Zn-Air Batteries 被引量:2
19
作者 Chenxi Xu Jiexing Wu +12 位作者 Liang Chen Yi Gong Boyang Mao Jincan Zhang Jinhai Deng Mingxuan Mao Yan Shi Zhaohui Hou Mengxue Cao Huanxin Li Haihui Zhou Zhongyuan Huang Yafei Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期102-110,共9页
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production... The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs. 展开更多
关键词 boric acid oxygen reduction reaction single-atom catalysts Zn-air batteries
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
20
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部