Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present stud...Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.展开更多
Salmonella enterica has a wide diversity,with numerous serovars belonging to six different subspecies with dynamic animal-host tropism.The FimH protein is the adhesin mediating binding to various cells,and slight amin...Salmonella enterica has a wide diversity,with numerous serovars belonging to six different subspecies with dynamic animal-host tropism.The FimH protein is the adhesin mediating binding to various cells,and slight amino acid discrepancy significantly affects the adherence capacities.To date,the general function of FimH variability across dif-ferent subspecies of Salmonella enterica has not been addressed.To investigate the biological functions of FimH among the six Salmonella enterica subspecies,the present study performed several assays to determine biofilm for-mation,Caenorhabditis elegans killing,and intestinal porcine enterocyte cell IPEC-J2 adhesion by using various FimH allele mutants.In general,allelic mutations in both the lectin and pilin domains of FimH could cause changes in bind-ing affnity,such as the N79S mutation.We also observed that the N79S variation in Salmonella Dublin increased the adhesive ability of IPEC-J2 cells.Moreover,a new amino acid substitution,T260M,within the pilin domain in one subspecies llb strain beneficial to binding to cells was highlighted in this study,even though the biofilm-forming and Caenorhabditis elegans-killing abilities exhibited no significant differences in variants.Combined with point muta-tions being a natural tendency due to positive selection in harsh environments,we speculate that allelic variation T26oM probably contributes to pathoadaptive evolution in Salmonella enterica subspecies llb.展开更多
Allelic variation in two domestic wheat landraces, Pingyaobaimai and Mazhamai, two cornerstone breeding materials and their derived cultivars with drought tolerance was detected by SSR (simple sequence repeat) markers...Allelic variation in two domestic wheat landraces, Pingyaobaimai and Mazhamai, two cornerstone breeding materials and their derived cultivars with drought tolerance was detected by SSR (simple sequence repeat) markers. The clustering of 25 accessions showed that the similarity between Pingyaobaimai and Yandal817, the latter was developed from the former, was 0.71, the highest one of all accessions, but the similarities were very low between these two accessions and other accessions including their derived cultivars. A similar situation was revealed between Mazhamai and its derived cultivars. Pingyaobaimai and its three derived cultivars shared three alleles at loci Xgwm526, Xgwm538 and Xgwm126 on chromosome arms 2BL, 4BL and 5AL, respectively. There were six shared alleles in Mazhamai and its derived cultivars, in order of Xgwm157, Xgwm126, Xgwm212, Xgwm626, Xgwm471 and Xgwm44 on chromosome arms 2DL, 5AL, 5DL, 6BL, 7AS and 7DC, respectively. Only one shared allele was detected between the pedigrees of Pingyaobaimai and Mazhamai. The difference of shared alleles in two cornerstone breeding materials and their derived cultivars revealed the diversity in Chinese wheat germplasm with drought tolerance and the complication in genetic basis of drought tolerance in wheat.展开更多
Knowledge of allelic frequencies at loci associated with kernel weight and effects on kernel weight-related traits is crucial for yield improvement in wheat. Kernel weight-related traits were evaluated in 200 Chinese ...Knowledge of allelic frequencies at loci associated with kernel weight and effects on kernel weight-related traits is crucial for yield improvement in wheat. Kernel weight-related traits were evaluated in 200 Chinese winter wheat cultivars(lines) grown at the Xinxiang Experimental Station, Chinese Academy of Agricultural Sciences, Xinxiang in Henan Province, for three consecutive years from 2014 to 2016. Alleles associated with kernel weight at nine loci, TaCKX6-D1, TaCwi-A1, TaCWI-4A, TaGS1a, TaGS5-A1, TaGS3-3A, TaGW2-6A, TaSus2-2B, and TaTGW6-A1, were determined for all cultivars(lines). ANOVA showed that genotypes, years and their interactions had significant effects on thousand-kernel weight(TKW), kernel length(KL) and kernel width(KW). The overall mean frequencies of alleles conferring high and low TKW at the nine loci were 65.9% and 33.4%, with the ranges of 37.0%–85.0% and 13.5%–63.0% for single loci. The frequencies of high-TKW alleles were over 50.0% at eight of the loci. Genotypes at each locus with the high-TKW allele had higher TKW than those with the low-TKW allele. The high-TKW allele Hap-H at the TaSus2-2B locus can be preferably used to increase grain yield due to its high TKW(49.32 g). A total of 18 main allelic combinations(ACs) at nine loci were detected. Three ACs(AC1–AC3) had significantly higher TKW than AC6 with high-TKW alleles at all nine loci even though they contained some low-TKW alleles. This indicated that other loci controlling kernel weight were present in the high-TKW cultivars. This work provides important information for parental selection and marker-assisted selection for breeding.展开更多
A collection of 167 Thai and exotic rice accessions was subjected for evaluation of genetic diversity and assessment of relationship by simple sequence repeat (SSR) markers. Among a total of 49 SSR markers, 13 markers...A collection of 167 Thai and exotic rice accessions was subjected for evaluation of genetic diversity and assessment of relationship by simple sequence repeat (SSR) markers. Among a total of 49 SSR markers, 13 markers distributing over 12 rice chromosomes showed clear polymorphic band patterns, and they were selected for genetic assessment. A total of 110 alleles were detected with an average of 8.46 alleles per locus. The averages of gene diversity, heterozygosity and polymorphic information content were 0.59, 0.02 and 0.56, respectively. The unweighted-pair group method with arithmetic averages (UPGMA) clustering analysis was performed for genetic distance, and phylogenetic tree was constructed. The result showed that this rice collection was divided into two major groups, classified as japonica and indica subspecies. Within the japonica group, temperate japonica and tropical japonica subgroups can be clearly separated. Three-dimensional principal component analysis projection and model-based population structure analysis showed consistent clustering results with two major groups of UPGMA analysis, supporting the classification of japonica and indica subspecies. The indica allelic frequency was also investigated to provide an indicative guide for breeders to overcome the practical problems on sterility of inter-subspecies hybrid offspring. This rice collection and information obtained in this study will be useful for rice breeding programs.展开更多
Endosperm mutants are critical to the studies on both starch synthesis and metabolism and genetic improvement of starch quality in maize.In the present study,a novel maize endosperm mutant A0178 of natural variation w...Endosperm mutants are critical to the studies on both starch synthesis and metabolism and genetic improvement of starch quality in maize.In the present study,a novel maize endosperm mutant A0178 of natural variation was used as the experimental material and identified and then characterized.Through phenotypic identification,genetic analysis,main ingredients measurement and embryo rescue,development of genetic mapping population from A0178,the endosperm mutant gene was located.The results showed that the mutant exhibited extremely low germination ability as attributed to the inhibited embryo development,and amounts of sugars were accumulated in the mutant seeds and more sugars content was detected at 23 days after pollination(DAP)in A0178 than B73.Employing genetic linkage analysis,the mutant trait was mapped in the bin 5.04 on chromosome 5.Sequence analysis showed that two sites of base transversion and insertion presented in the protein coding region and non-coding region of the mutant brittle-1(bt1),the adenylate translocator encoding gene involved in the starch synthesis.The single base insertion in the coding region cause frameshift mutation,early termination and lose of function of Brittle-1(BT1).All results suggested that bt1 is a novel allelic gene and the causal gene of this endosperm mutant,providing insights on the mechanism of endosperm formation in maize.展开更多
Drought stress is one of the most important factors limiting maize production. Rab17 is an ABA-responsive gene and associated with drought tolerance. In order to identify haplotypic structure and mine allelic variants...Drought stress is one of the most important factors limiting maize production. Rab17 is an ABA-responsive gene and associated with drought tolerance. In order to identify haplotypic structure and mine allelic variants at tab17 locus, nucleotide diversity and linkage disequilibrium (LD) structure of rab17 were evaluated among a mini core set of Chinese diversified maize inbred lines. Totally, 19 SNP and 18 insertion/deletions (InDels) were identified, among which 81% were in non-coding regions and 19% in coding regions. The results showed that a high level of diversity appeared within 1 kb upstream of the rabl 7 locus, and declined quickly downstream of the gene region. Rapid decay of linkage disequilibrium of rabl 7 region with distance within 1 kb was detected. Functional markers which can be developed based on haplotype 14 are expected to have contribution to molecular breeding for drought tolerance.展开更多
Allelic diversity for five genetic loci (DL, FON4, OsMADS24, OsMADS45 and Spw1) associated with floral organ development were investigated among a small heterogeneous rice population which included one wild species (O...Allelic diversity for five genetic loci (DL, FON4, OsMADS24, OsMADS45 and Spw1) associated with floral organ development were investigated among a small heterogeneous rice population which included one wild species (O. rufipogon Griffiths), one indigenous less popular natural floral organ mutant (O. sativa var. indica cv. Jugal), one indigenous normal line (O. sativa var. indica cv. Bhutmoori) and one improved high yielding line (O. sativa var. indica cv. IR 36). Detailed spikelet morphology showed that var. Jugal had variable number (1 - 3) of carpels within a single spikelet which was unique and resulted in variable (1 - 3) number of kernels within a single matured spikelet (grain). The genomic DNA of each investigated line was amplified with primer sequences designed from the selected genetic loci and the derived polymorphism profiles were used for study of allelic diversity for the studied loci. The derived genetic distances among the rice lines were used for dendrogram construction. In constructed dendrogram, the mutant genotype (Jugal) showed highest similarity with the wild rice (O. rufipogon) instead of the rice lines. To verify this finding, the genomic DNA of each studied line was also amplified with four SSR loci, tightly linked to saltol QTL, mapped to rice chromosome 1. The amplified products were screened for polymorphism and another dendrogram was constructed to reveal the genetic distance among the lines for selected salt tolerance linked SSR loci. In SSR derived dendrogram, the wild rice (O. rufipogon) got totally separated from the all three rice genotypes though all the studied four lines showed equal sensitivity for salt sensitivity in a physiological screening experiment. From the combined experiment, it can be concluded that genetic architecture of floral organ development loci in var. Jugal may have some uniqueness which is not present in normal rice but common to O. rufipogon, a species which is regarded as immediate progenitor of present day modern rice (O. sativa). Though this uniqueness was not confirmed by second set genetic loci associated with salt tolerance in rice, the information resulted from this experiment was preliminary and based only on allelic size (molecular weight of amplicon), which should be confirmed through sequence analysis for further analysis.展开更多
SNP mutations in the HOXB13 gene associated with prostate cancer were determined in Moroccans prostate cancer patients (PCa). All PCa SNP mutations were new and belong to the SNP point-mutations located on the stop co...SNP mutations in the HOXB13 gene associated with prostate cancer were determined in Moroccans prostate cancer patients (PCa). All PCa SNP mutations were new and belong to the SNP point-mutations located on the stop codon of HOXB13 exon 1 and 2 located in chromosome 17. The five mutations and their frequencies were as follows: rs1197613952 (12%), rs1597934612 (4%), rs1597933874 (4%), rs1597933837 (4%) and rs867793282 (4%). The European HOXB13-G84E (rs138213197) PCa mutation was not detected among Moroccan patients. The Y-chromosome genealogical haplotypes of the Western European (R1b1b2-M2G9) and the Eastern European (R191a-M-17) were not observed in Moroccans PCa patients. The patients have their own haplotypes E1b1 and J with a frequency of 55 and 35%, respectively. The results of the SNP mutations in the HOXB13, the absence of the HOXB13-G84E of the European in the Moroccans PCa patients, the absence of the European-lineage haplogroups (R1a1a-M17 and R1b1b2-M269) and the presence of E1b1b and J in Moroccans PCa patients would clearly indicate the absence of gene flow from European to Moroccans gene pool.展开更多
Objective: Allelic polymorphisms of CCR5△32CCR2b-64I,CX3CR1-2491280M and SDF1-3'A associatedwith HIV-1 infection and disease progression wereinvestigated in indigenous Uygur populations from theXinjiang Uygur Aut...Objective: Allelic polymorphisms of CCR5△32CCR2b-64I,CX3CR1-2491280M and SDF1-3'A associatedwith HIV-1 infection and disease progression wereinvestigated in indigenous Uygur populations from theXinjiang Uygur Autonomous Region of China. Methods: The study population comprised 316 healthyUygur subjects with an age range of 1-80 years old, fromwhom whole peripheral blood samples were collected andnone were HIV-1 seropositive. Genomic DNA samples werepurified using a Qiagen Blood Kit. Genotyping of theaforementioned four alleles was performed using PCR orPCR/RFLP assay, and further confirmed by direct DNAsequencing. Results: The allelic frequencies in Chinese Uygurpopulation were as follows: 3.48% for CCR5△32; 19.45% forCCR2b-64I; 13.8% for CX3CR1-2491280M haplotype, and20.41% for SDF1-3'A. Mutant allele distributions amongUygur populations were in accordance with theHardy-Weinberg equilibrium. No statistical difference wasfound between the frequency of the three HIV coreceptors andtheir respective ligand genes. Conclusion: The frequency of SDF1-3'A andCX3CR1-2491280M haplotypes in these Uygur populationswas similar to that of Caucasian people, while the frequency ofthe CCR2b-64I haplotype more closely matched the HanChinese. The frequency of CCR5△A32 in Uygur populationswas between Caucasian and Hall frequencies, the more closelymatching the frequency in Medi-Asia people. No geneticlinkage between any two of the three HIV coreceptor geneswas found, but obvious genetic linkages existed betweenCX3CR1-249I and CX3CR1-280M,with even higher linkagedegrees than Caucasian people.展开更多
AIM To analyze the association of HLA-DRBl with autoimmune hepatitis (AIH) in patients from China.``METHODS In .32 patients and 45 healthy controls,polymerase chain reaction amplification with sequencespecific primers...AIM To analyze the association of HLA-DRBl with autoimmune hepatitis (AIH) in patients from China.``METHODS In .32 patients and 45 healthy controls,polymerase chain reaction amplification with sequencespecific primers (PCR-SSP) was performed to examine the association of certain alleles or polymorphic sequences of HLA-DRB1 with AIH.``RESULTS HLA-DRB1 typing by PCFLSSP showed that DR4had a significantly increased frequency among patients with AIH versus healthy control (46.9% versus 20.8%;relative risk 3.35, P=0.014). In subtypes of DR4, there was a trend of increase in the gene frequency of DRB10405 in patients with AIH versus healthy controls (21.9%vs 6.3%, P=0.04, but Pc 0.08). In addition, asignificant increase was found in the alleles frequency encoding QRRAA from the third hyperpolymorphic region of DR4 in the patients with AIH (86.7% of DR4 positive patients vs 40.0% in DR4 positive controls, P 0.016, Pc =0.028. RR 9.75).``CONCLUSION AIH in Chinese is associated with HLADR4. There is a relationship between QRRAA sequence within the third hyperpolymorphic region of the DRB allele and AIH in Chinese.展开更多
Late stage colorectal carcinoma is very complicated in its molecular mechanisms. One hundred andnine cases of colorectal carcinomas were analyzed with RFLP method for the allelic deletion of chromosome 17short arms (A...Late stage colorectal carcinoma is very complicated in its molecular mechanisms. One hundred andnine cases of colorectal carcinomas were analyzed with RFLP method for the allelic deletion of chromosome 17short arms (ADCC17p) In this study. The results showed that frs(luency of allelic deletion of chromosome 17short arms (FADC17P) in Dukes’ D stage (95 % ) was higher than those in Dukes’ A, B. C stages (54% 68% ); Fisher’s exact test P <0. 01; FADC17p in colorectal carcinomas with distant metastasis (95 % ) washigher than those without distant metastasis, Fisher’s exact test P <0. 01 However, there were no significant differences in FADC 1 7p between the colorectal carcinomas with lymph node metastasis and those without lymph node metastasis (P >0. 05). Therefore, it is considered that ADC17p is an important diagnosticmarker of late stage colorectal carcinomas, and indicates a poor prognosis.展开更多
Heading date was an important trait that decided the adaptation of wheat to environments. It was modiifed by genes involved in vernalization response, photoperiod response and development rate. In this study, four loc...Heading date was an important trait that decided the adaptation of wheat to environments. It was modiifed by genes involved in vernalization response, photoperiod response and development rate. In this study, four loci Xgwm261, Xgwm219, Xbarc23 and Ppd-D1 which were previously reported related to heading time were analyzed based on three groups of wheat including landraces (L), varieties bred before 1983 (B82) and after 1983 (A83) collected from Chinese wheat growing areas. Generally, heading date of landrace was longer than that of varieties. Signiifcant differences in the heading time existed within the groups, which implied that diversiifcation selection was much helpful for adaptation in each wheat zone. Photoperiod insensitive allele Ppd-D1a was the ifrst choice for both landrace and modern varieties, which promoted the heading date about four days earlier than that of sensitive allele Ppd-D1b. The three SSR loci had different characters in the three groups. Predominant allele combination for each zone was predicted for wheat group L and A83, which made great contribution to advantageous traits. Xgwm219 was found to be signiifcantly associated with heading date in Yellow and Huai River Winter Wheat Zone (Zone II) and spike length in Middle and lower Yangtze Valley Winter Wheat Zone (Zone III), which implied functional diversiifcation for adaption. Variation for earliness genes provided here will be helpful for whet breeding in future climatic change.展开更多
Dwarfing breeding of wheat in the world is confined to the exploitation of recessive dwarfing sources. None of the dominant dwarfing sources discovered in common wheat (Triticum aestivum L.) has found wide exploitatio...Dwarfing breeding of wheat in the world is confined to the exploitation of recessive dwarfing sources. None of the dominant dwarfing sources discovered in common wheat (Triticum aestivum L.) has found wide exploitation in wheat breeding due to the extreme dwarfness of their plants (2055 cm). We found in our work that some stable mutant lines with their plant height enhanced to different extents could be obtained in large populations derived from the stock seeds of the dominant dwarfing sources Aibian1 carrying Rht10 on 4DS and being 2055 cm tall and Aisu2 carrying Rht3 on 4BS and being 55 cm tall, or from their descendants of induced mutation treatments, or from the segregating descendants of their crosses with mid- or tall-statured genotypes. Subsequently, we studied these mutation-derived lines differing in plant height with near isogenic lines and observed that the character of their enhanced plant height bred true, each carrying a semi-dominant dwarfing gene for a definite height and that as the plant height of the mutation-derived lines increased, the yield-contributing characters of their near isogenic lines were significantly improved. When test crosses with marker genes and physiological and biochemical genetic marker tests were performed to re-localize the semi-dominant dwarfing genes carried by the mutation-derived lines, it was confirmed that they shared common loci with Rht10 and Rht3 and that they were all mutation-derived multiple alleles. It is thus speculated that dominant dwarfing genes are of 'multi-allelic polymorphism'. In other words, dominant dwarfing genes, which are ultra-dwarfing, are liable to develop by mutation into a group of multiple alleles with plant height enhanced to different extents and some may have a height close to the ideal plant height for wheat breeding. Therefore, these results offer a fundamentally new approach for the exploitation of dominant dwarfing sources in wheat breeding.展开更多
The NAM-B1 gene is a member of the NAC(NAM,ATAF,and CUC)transcription factor family and plays an important role in regulating wheat grain protein content(GPC).The ancestral NAM-B1 allele has been discovered in man...The NAM-B1 gene is a member of the NAC(NAM,ATAF,and CUC)transcription factor family and plays an important role in regulating wheat grain protein content(GPC).The ancestral NAM-B1 allele has been discovered in many tetraploid wild emmer(Triticum turgidum ssp.dicoccoides)accessions and few domesticated emmer accessions(T.turgidum ssp.dicoccum),however,it is rarely found in hexaploid bread wheat(Triticum aestivum L.).There are no systematic reports on the distribution of NAM-B1 alleles in Chinese wheat cultivars.In this study,the NAM-B1 alleles in 218 Chinese cultivars were investigated.The cultivars were collected from five major wheat regions(12 provinces),covering most of the winter wheat growing regions in China.The results showed that the NAM-B1 gene is present in 53(24.3%)cultivars and absent in the remaining 165(75.7%)cultivars.Further analysis revealed that in contrast to the wild-type allele,the NAM-B1 gene in Chinese wheat cultivars contained a 1-bp insertion in the coding region.This caused a frame-shift mutation and introduced a stop codon in the middle of the gene,rendering it non-functional.Polymorphisms were detected in DNA sequences of 21cultivars among these 53 cultivars.However,cD NA sequence analysis suggested that these variations in the exon region were not able to restore NAM-B1 gene(1-bp insertion)function.Thus,exploring the distribution of NAM-B1 gene variations(1-bp insertion and deletion)can provide some information for improving the quality of winter wheat in China and other countries.展开更多
Single nucleotide polymorphisms and restriction digestion-based haplotype variations among 160 flood prone rice varieties were analyzed with enzymes Alu I and Cac8 I to generate polymorphisms at Sub1A and Sub1C loci ...Single nucleotide polymorphisms and restriction digestion-based haplotype variations among 160 flood prone rice varieties were analyzed with enzymes Alu I and Cac8 I to generate polymorphisms at Sub1A and Sub1C loci (conferring submergence tolerance), respectively. Haplotype associated with phenotype was used to study the haplotype variations at Sub1A and Sub1C loci and to determine their functional influence on submergence tolerance and stem elongation. Three patterns at Sub1A locus, Sub1A0 (null allele), Sub1A1 (does not cut) and Sub1A2 (one SNP), and four patterns at Sub1C locus, Sub1C1, Sub1C2, Sub1C3 and Sub1C4, were generated. Both tolerant Sub1A1 and intolerant Sub1A2 had the same length, but the difference was presence of a restriction site in the Sub1A2, but absent at the Sub1A1. Further, two types of polymorphism were detected at the Sub1C, one included major length polymorphisms (165, 170 and 175 bp) and the other was a single restriction site at different position. Eight haplotypes (different combinations of the two loci), A1C1, A1C2, A1C4, A2C2, A2C4, A0C2, A0C3 and A0C4, were detected among 160 varieties. Haplotype A1C1 was comparatively more related to haplotypes A1C2 and A1C4, having the same Sub1A allele, and these haplotypes were found only in Bangladeshi, Sri Lankan and Indian varieties. Most tolerant varieties in A1C1 haplotype showed slow elongation, having tolerant specific Sub1A1 and Sub1C1 alleles. Further, the varieties Madabaru and Kottamali (A2C2) also showed moderate level of tolerance without Sub1A1 allele. These varieties were different with FR13A and also suspected to carry different novel tolerant genes at other loci. These materials could be used for hybridization with Sub1 varieties for pyramiding additional tolerant specific alleles into a single genotype for improving submergence tolerance in rice.展开更多
Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowled...Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowledge of the genetic and molecular mechanisms underlying cotton boll abscission traits has hindered genetic improvements.Results Pearson’s correlation analysis revealed a significant positive correlation between boll abscission rates 1(AR1)and boll abscission rates 2(AR2).A genome-wide association study was conducted on 145 loci that exhibited high polymorphism and were uniformly distributed across 26 chromosomes(pair).The study revealed 18,46,and 62 markers that were significantly associated with boll abscission,fiber quality,and yield traits(P<0.05),explaining 1.75%–7.13%,1.16%–9.58%,and 1.40%–5.44%of the phenotypic variation,respectively.Notably,the marker MON_SHIN-1584b was associated with the cotton boll abscission trait,whereas MON_CGR5732a was associated with cotton boll abscission and fiber quality traits.Thirteen of the marker loci identified in this study had been previously reported.Based on phenotypic effects,six typical cultivars with elite alleles related to cotton boll abscission,fiber quality,and yield traits were identified.These cultivars hold great promise for widespread utilization in breeding programs.Conclusions These results lay the foundation for understanding the molecular regulatory mechanism of cotton boll abscission and provide data for the future improvement of cotton breeding.展开更多
Summary Precise replacement of an existing allele in commercial cultivars with an elite allele is a major goal in crop breeding. A single nucleotide polymorphism in the NRT1.1B gene between japonica and indica rice is...Summary Precise replacement of an existing allele in commercial cultivars with an elite allele is a major goal in crop breeding. A single nucleotide polymorphism in the NRT1.1B gene between japonica and indica rice is responsible for the improved nitrogen use efficiency in indica rice. Herein, we precisely replaced the japonica NRT1.1B allele with the indica allele, in just one generation, using CRISPR/Cas9 gene-editing technology. No additional selective pressure was needed to enrich the precise replacement events.展开更多
Plant height is an important agronomic trait. Dramatic increase in wheat yield during the "green revolution" is mainly due to the widespread utilization of the Reduced height (Rht)-1gene. We analyzed the natural a...Plant height is an important agronomic trait. Dramatic increase in wheat yield during the "green revolution" is mainly due to the widespread utilization of the Reduced height (Rht)-1gene. We analyzed the natural allelic variations of three homoeologous loci Rht-A1, Rht-B1, and Rht-D1 in Chinese wheat (Triticum aestivum L.) micro-core collections and the Rht-B1/D1 genotypes in over 1,500 bred cultivars and germplasms using a modified EcoTILLING. We identified six new Rht-A1 allelic variations (Rht-Alb-g), eight new Rht-B1 allelic variations (Rht-Blh-o), and six new Rht-D1 allelic variations (Rht-Dle-j). These allelic variations contain single nucleotide polymorphisms (SNPs) or small insertions and deletions in the coding or uncoding regions, involving two frame-shift mutations and 15 missenses. Of which, Rht-Dle and Rht-Dlh resulted in the loss of interactions of GID1-DELLA-GID2, Rht-Blicould increase plant height. We found that the Rht-Blh contains the same SNPs and 197 bp fragment insertion as reported in Rht-Blc. Further detection of Rht-Blh in Tibet wheat germplasms and wheat relatives indicated that Rht-Blc may originate from Rht-Blh. These results suggest rich genetic diversity at the Rht-1 loci and provide new resources for wheat breeding.展开更多
Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp...Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp.tritici(Bgt).A powdery mildew resistance gene Ml I^(W172)originated from WEW accession I^(W172)(G-797-M)is fine mapped in a 0.048 centimorgan(c M)genetic interval on 7 AL,corresponding to a genomic region spanning 233 kb,1 Mb and 800 kb in Chinese Spring,WEW Zavitan,and T.urartu G1812,respectively.Ml I^(W172)encodes a typical NLR protein NLRI^(W172)and physically locates in an NBS-LRR gene cluster.NLRI^(W172)is subsequently identified as a new allele of Pm60,and its function is validated by EMS mutagenesis and transgenic complementation.Haplotype analysis of the Pm60 alleles reveals diversifications in sequence variation in the locus and presence and absence variations(PAV)in WEW populations.Four common single nucleotide variations(SNV)are detected between the Pm60 alleles from WEW and T.urartu,indicative of speciation divergence between the two different wheat progenitors.The newly identified Pm60 alleles and haplotypes in WEW are anticipated to be valuable for breeding powdery mildew resistance wheat cultivars via marker-assisted selection.展开更多
基金the Henan Special Funds for Major Science and Technology,China(221100110400)the Henan Scienti?c and Technological Joint Project for Agricultural Improved Varieties,China(2022010503)the National Natural Science Foundation of China(31902038 and 32072564)。
文摘Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.
基金supported by the National Program on Key Research Project of China(2022YFC2604201)well as the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No.861917-SAFFl,Zhejiang Provincial Key R&D Program of China(2023C03045)+2 种基金Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0083)Key Research and Development Program of Hangzhou(202203A08)District-level project for high-level innovative and entrepreneurial talents of"Zijinshan Talents Gaochun Plan"(202100677).
文摘Salmonella enterica has a wide diversity,with numerous serovars belonging to six different subspecies with dynamic animal-host tropism.The FimH protein is the adhesin mediating binding to various cells,and slight amino acid discrepancy significantly affects the adherence capacities.To date,the general function of FimH variability across dif-ferent subspecies of Salmonella enterica has not been addressed.To investigate the biological functions of FimH among the six Salmonella enterica subspecies,the present study performed several assays to determine biofilm for-mation,Caenorhabditis elegans killing,and intestinal porcine enterocyte cell IPEC-J2 adhesion by using various FimH allele mutants.In general,allelic mutations in both the lectin and pilin domains of FimH could cause changes in bind-ing affnity,such as the N79S mutation.We also observed that the N79S variation in Salmonella Dublin increased the adhesive ability of IPEC-J2 cells.Moreover,a new amino acid substitution,T260M,within the pilin domain in one subspecies llb strain beneficial to binding to cells was highlighted in this study,even though the biofilm-forming and Caenorhabditis elegans-killing abilities exhibited no significant differences in variants.Combined with point muta-tions being a natural tendency due to positive selection in harsh environments,we speculate that allelic variation T26oM probably contributes to pathoadaptive evolution in Salmonella enterica subspecies llb.
文摘Allelic variation in two domestic wheat landraces, Pingyaobaimai and Mazhamai, two cornerstone breeding materials and their derived cultivars with drought tolerance was detected by SSR (simple sequence repeat) markers. The clustering of 25 accessions showed that the similarity between Pingyaobaimai and Yandal817, the latter was developed from the former, was 0.71, the highest one of all accessions, but the similarities were very low between these two accessions and other accessions including their derived cultivars. A similar situation was revealed between Mazhamai and its derived cultivars. Pingyaobaimai and its three derived cultivars shared three alleles at loci Xgwm526, Xgwm538 and Xgwm126 on chromosome arms 2BL, 4BL and 5AL, respectively. There were six shared alleles in Mazhamai and its derived cultivars, in order of Xgwm157, Xgwm126, Xgwm212, Xgwm626, Xgwm471 and Xgwm44 on chromosome arms 2DL, 5AL, 5DL, 6BL, 7AS and 7DC, respectively. Only one shared allele was detected between the pedigrees of Pingyaobaimai and Mazhamai. The difference of shared alleles in two cornerstone breeding materials and their derived cultivars revealed the diversity in Chinese wheat germplasm with drought tolerance and the complication in genetic basis of drought tolerance in wheat.
基金supported by the National Key Research and Development Program of China (2017YFD0101000, 2016YFD0101004)the National Natural Science Foundation of China (31771881, 31401468)the CAAS Innovation Team and the National Engineering Laboratory of Crop Molecular Breeding
文摘Knowledge of allelic frequencies at loci associated with kernel weight and effects on kernel weight-related traits is crucial for yield improvement in wheat. Kernel weight-related traits were evaluated in 200 Chinese winter wheat cultivars(lines) grown at the Xinxiang Experimental Station, Chinese Academy of Agricultural Sciences, Xinxiang in Henan Province, for three consecutive years from 2014 to 2016. Alleles associated with kernel weight at nine loci, TaCKX6-D1, TaCwi-A1, TaCWI-4A, TaGS1a, TaGS5-A1, TaGS3-3A, TaGW2-6A, TaSus2-2B, and TaTGW6-A1, were determined for all cultivars(lines). ANOVA showed that genotypes, years and their interactions had significant effects on thousand-kernel weight(TKW), kernel length(KL) and kernel width(KW). The overall mean frequencies of alleles conferring high and low TKW at the nine loci were 65.9% and 33.4%, with the ranges of 37.0%–85.0% and 13.5%–63.0% for single loci. The frequencies of high-TKW alleles were over 50.0% at eight of the loci. Genotypes at each locus with the high-TKW allele had higher TKW than those with the low-TKW allele. The high-TKW allele Hap-H at the TaSus2-2B locus can be preferably used to increase grain yield due to its high TKW(49.32 g). A total of 18 main allelic combinations(ACs) at nine loci were detected. Three ACs(AC1–AC3) had significantly higher TKW than AC6 with high-TKW alleles at all nine loci even though they contained some low-TKW alleles. This indicated that other loci controlling kernel weight were present in the high-TKW cultivars. This work provides important information for parental selection and marker-assisted selection for breeding.
基金supported by the Center of Excellence on Agricultural Biotechnology,Science and Technology Postgraduate Education and Research Development Office,Office of Higher Education Commission,Ministry of Education(AG-BIO/PERDO-CHE)Agricultural Research Development Agency(ARDA)National Science and Technology Development Agency in Thailand
文摘A collection of 167 Thai and exotic rice accessions was subjected for evaluation of genetic diversity and assessment of relationship by simple sequence repeat (SSR) markers. Among a total of 49 SSR markers, 13 markers distributing over 12 rice chromosomes showed clear polymorphic band patterns, and they were selected for genetic assessment. A total of 110 alleles were detected with an average of 8.46 alleles per locus. The averages of gene diversity, heterozygosity and polymorphic information content were 0.59, 0.02 and 0.56, respectively. The unweighted-pair group method with arithmetic averages (UPGMA) clustering analysis was performed for genetic distance, and phylogenetic tree was constructed. The result showed that this rice collection was divided into two major groups, classified as japonica and indica subspecies. Within the japonica group, temperate japonica and tropical japonica subgroups can be clearly separated. Three-dimensional principal component analysis projection and model-based population structure analysis showed consistent clustering results with two major groups of UPGMA analysis, supporting the classification of japonica and indica subspecies. The indica allelic frequency was also investigated to provide an indicative guide for breeders to overcome the practical problems on sterility of inter-subspecies hybrid offspring. This rice collection and information obtained in this study will be useful for rice breeding programs.
基金This work was financially supported in part by grants from National Science and Technology Support Project of China(2016YFD0101205)the Natural Science Foundation of Jiangsu Province,China(BK20160586)+1 种基金National Transgenic Major Project of China(2019ZX08010-004)as well as Six Talent Peaks Project of Jiangsu Province,China(NY-020).
文摘Endosperm mutants are critical to the studies on both starch synthesis and metabolism and genetic improvement of starch quality in maize.In the present study,a novel maize endosperm mutant A0178 of natural variation was used as the experimental material and identified and then characterized.Through phenotypic identification,genetic analysis,main ingredients measurement and embryo rescue,development of genetic mapping population from A0178,the endosperm mutant gene was located.The results showed that the mutant exhibited extremely low germination ability as attributed to the inhibited embryo development,and amounts of sugars were accumulated in the mutant seeds and more sugars content was detected at 23 days after pollination(DAP)in A0178 than B73.Employing genetic linkage analysis,the mutant trait was mapped in the bin 5.04 on chromosome 5.Sequence analysis showed that two sites of base transversion and insertion presented in the protein coding region and non-coding region of the mutant brittle-1(bt1),the adenylate translocator encoding gene involved in the starch synthesis.The single base insertion in the coding region cause frameshift mutation,early termination and lose of function of Brittle-1(BT1).All results suggested that bt1 is a novel allelic gene and the causal gene of this endosperm mutant,providing insights on the mechanism of endosperm formation in maize.
基金supported by the National Basic Research Program of China (973 Program, 2011CB100105)the National High-Tech R&D Program (863 Program,2006AA10Z188)the National Natural Science Foundation of China (30730063)
文摘Drought stress is one of the most important factors limiting maize production. Rab17 is an ABA-responsive gene and associated with drought tolerance. In order to identify haplotypic structure and mine allelic variants at tab17 locus, nucleotide diversity and linkage disequilibrium (LD) structure of rab17 were evaluated among a mini core set of Chinese diversified maize inbred lines. Totally, 19 SNP and 18 insertion/deletions (InDels) were identified, among which 81% were in non-coding regions and 19% in coding regions. The results showed that a high level of diversity appeared within 1 kb upstream of the rabl 7 locus, and declined quickly downstream of the gene region. Rapid decay of linkage disequilibrium of rabl 7 region with distance within 1 kb was detected. Functional markers which can be developed based on haplotype 14 are expected to have contribution to molecular breeding for drought tolerance.
文摘Allelic diversity for five genetic loci (DL, FON4, OsMADS24, OsMADS45 and Spw1) associated with floral organ development were investigated among a small heterogeneous rice population which included one wild species (O. rufipogon Griffiths), one indigenous less popular natural floral organ mutant (O. sativa var. indica cv. Jugal), one indigenous normal line (O. sativa var. indica cv. Bhutmoori) and one improved high yielding line (O. sativa var. indica cv. IR 36). Detailed spikelet morphology showed that var. Jugal had variable number (1 - 3) of carpels within a single spikelet which was unique and resulted in variable (1 - 3) number of kernels within a single matured spikelet (grain). The genomic DNA of each investigated line was amplified with primer sequences designed from the selected genetic loci and the derived polymorphism profiles were used for study of allelic diversity for the studied loci. The derived genetic distances among the rice lines were used for dendrogram construction. In constructed dendrogram, the mutant genotype (Jugal) showed highest similarity with the wild rice (O. rufipogon) instead of the rice lines. To verify this finding, the genomic DNA of each studied line was also amplified with four SSR loci, tightly linked to saltol QTL, mapped to rice chromosome 1. The amplified products were screened for polymorphism and another dendrogram was constructed to reveal the genetic distance among the lines for selected salt tolerance linked SSR loci. In SSR derived dendrogram, the wild rice (O. rufipogon) got totally separated from the all three rice genotypes though all the studied four lines showed equal sensitivity for salt sensitivity in a physiological screening experiment. From the combined experiment, it can be concluded that genetic architecture of floral organ development loci in var. Jugal may have some uniqueness which is not present in normal rice but common to O. rufipogon, a species which is regarded as immediate progenitor of present day modern rice (O. sativa). Though this uniqueness was not confirmed by second set genetic loci associated with salt tolerance in rice, the information resulted from this experiment was preliminary and based only on allelic size (molecular weight of amplicon), which should be confirmed through sequence analysis for further analysis.
文摘SNP mutations in the HOXB13 gene associated with prostate cancer were determined in Moroccans prostate cancer patients (PCa). All PCa SNP mutations were new and belong to the SNP point-mutations located on the stop codon of HOXB13 exon 1 and 2 located in chromosome 17. The five mutations and their frequencies were as follows: rs1197613952 (12%), rs1597934612 (4%), rs1597933874 (4%), rs1597933837 (4%) and rs867793282 (4%). The European HOXB13-G84E (rs138213197) PCa mutation was not detected among Moroccan patients. The Y-chromosome genealogical haplotypes of the Western European (R1b1b2-M2G9) and the Eastern European (R191a-M-17) were not observed in Moroccans PCa patients. The patients have their own haplotypes E1b1 and J with a frequency of 55 and 35%, respectively. The results of the SNP mutations in the HOXB13, the absence of the HOXB13-G84E of the European in the Moroccans PCa patients, the absence of the European-lineage haplogroups (R1a1a-M17 and R1b1b2-M269) and the presence of E1b1b and J in Moroccans PCa patients would clearly indicate the absence of gene flow from European to Moroccans gene pool.
基金This project was funded by the National Natural Science Foundation of China(No:397706830)
文摘Objective: Allelic polymorphisms of CCR5△32CCR2b-64I,CX3CR1-2491280M and SDF1-3'A associatedwith HIV-1 infection and disease progression wereinvestigated in indigenous Uygur populations from theXinjiang Uygur Autonomous Region of China. Methods: The study population comprised 316 healthyUygur subjects with an age range of 1-80 years old, fromwhom whole peripheral blood samples were collected andnone were HIV-1 seropositive. Genomic DNA samples werepurified using a Qiagen Blood Kit. Genotyping of theaforementioned four alleles was performed using PCR orPCR/RFLP assay, and further confirmed by direct DNAsequencing. Results: The allelic frequencies in Chinese Uygurpopulation were as follows: 3.48% for CCR5△32; 19.45% forCCR2b-64I; 13.8% for CX3CR1-2491280M haplotype, and20.41% for SDF1-3'A. Mutant allele distributions amongUygur populations were in accordance with theHardy-Weinberg equilibrium. No statistical difference wasfound between the frequency of the three HIV coreceptors andtheir respective ligand genes. Conclusion: The frequency of SDF1-3'A andCX3CR1-2491280M haplotypes in these Uygur populationswas similar to that of Caucasian people, while the frequency ofthe CCR2b-64I haplotype more closely matched the HanChinese. The frequency of CCR5△A32 in Uygur populationswas between Caucasian and Hall frequencies, the more closelymatching the frequency in Medi-Asia people. No geneticlinkage between any two of the three HIV coreceptor geneswas found, but obvious genetic linkages existed betweenCX3CR1-249I and CX3CR1-280M,with even higher linkagedegrees than Caucasian people.
文摘AIM To analyze the association of HLA-DRBl with autoimmune hepatitis (AIH) in patients from China.``METHODS In .32 patients and 45 healthy controls,polymerase chain reaction amplification with sequencespecific primers (PCR-SSP) was performed to examine the association of certain alleles or polymorphic sequences of HLA-DRB1 with AIH.``RESULTS HLA-DRB1 typing by PCFLSSP showed that DR4had a significantly increased frequency among patients with AIH versus healthy control (46.9% versus 20.8%;relative risk 3.35, P=0.014). In subtypes of DR4, there was a trend of increase in the gene frequency of DRB10405 in patients with AIH versus healthy controls (21.9%vs 6.3%, P=0.04, but Pc 0.08). In addition, asignificant increase was found in the alleles frequency encoding QRRAA from the third hyperpolymorphic region of DR4 in the patients with AIH (86.7% of DR4 positive patients vs 40.0% in DR4 positive controls, P 0.016, Pc =0.028. RR 9.75).``CONCLUSION AIH in Chinese is associated with HLADR4. There is a relationship between QRRAA sequence within the third hyperpolymorphic region of the DRB allele and AIH in Chinese.
文摘Late stage colorectal carcinoma is very complicated in its molecular mechanisms. One hundred andnine cases of colorectal carcinomas were analyzed with RFLP method for the allelic deletion of chromosome 17short arms (ADCC17p) In this study. The results showed that frs(luency of allelic deletion of chromosome 17short arms (FADC17P) in Dukes’ D stage (95 % ) was higher than those in Dukes’ A, B. C stages (54% 68% ); Fisher’s exact test P <0. 01; FADC17p in colorectal carcinomas with distant metastasis (95 % ) washigher than those without distant metastasis, Fisher’s exact test P <0. 01 However, there were no significant differences in FADC 1 7p between the colorectal carcinomas with lymph node metastasis and those without lymph node metastasis (P >0. 05). Therefore, it is considered that ADC17p is an important diagnosticmarker of late stage colorectal carcinomas, and indicates a poor prognosis.
基金supported by the National Basic Research Program of China(2010CB951500)
文摘Heading date was an important trait that decided the adaptation of wheat to environments. It was modiifed by genes involved in vernalization response, photoperiod response and development rate. In this study, four loci Xgwm261, Xgwm219, Xbarc23 and Ppd-D1 which were previously reported related to heading time were analyzed based on three groups of wheat including landraces (L), varieties bred before 1983 (B82) and after 1983 (A83) collected from Chinese wheat growing areas. Generally, heading date of landrace was longer than that of varieties. Signiifcant differences in the heading time existed within the groups, which implied that diversiifcation selection was much helpful for adaptation in each wheat zone. Photoperiod insensitive allele Ppd-D1a was the ifrst choice for both landrace and modern varieties, which promoted the heading date about four days earlier than that of sensitive allele Ppd-D1b. The three SSR loci had different characters in the three groups. Predominant allele combination for each zone was predicted for wheat group L and A83, which made great contribution to advantageous traits. Xgwm219 was found to be signiifcantly associated with heading date in Yellow and Huai River Winter Wheat Zone (Zone II) and spike length in Middle and lower Yangtze Valley Winter Wheat Zone (Zone III), which implied functional diversiifcation for adaption. Variation for earliness genes provided here will be helpful for whet breeding in future climatic change.
基金This work was supported by Science and Technology Commission of Chongqing Municipality for the Project“Innovation of Genetic Resources of Wheat"by the National Natural Science Foundation of China for the Project“Studies of Mutialelie Polymorphism of Dominant Dwarfing Genes in Wheat(30370875/C02020502)”.
文摘Dwarfing breeding of wheat in the world is confined to the exploitation of recessive dwarfing sources. None of the dominant dwarfing sources discovered in common wheat (Triticum aestivum L.) has found wide exploitation in wheat breeding due to the extreme dwarfness of their plants (2055 cm). We found in our work that some stable mutant lines with their plant height enhanced to different extents could be obtained in large populations derived from the stock seeds of the dominant dwarfing sources Aibian1 carrying Rht10 on 4DS and being 2055 cm tall and Aisu2 carrying Rht3 on 4BS and being 55 cm tall, or from their descendants of induced mutation treatments, or from the segregating descendants of their crosses with mid- or tall-statured genotypes. Subsequently, we studied these mutation-derived lines differing in plant height with near isogenic lines and observed that the character of their enhanced plant height bred true, each carrying a semi-dominant dwarfing gene for a definite height and that as the plant height of the mutation-derived lines increased, the yield-contributing characters of their near isogenic lines were significantly improved. When test crosses with marker genes and physiological and biochemical genetic marker tests were performed to re-localize the semi-dominant dwarfing genes carried by the mutation-derived lines, it was confirmed that they shared common loci with Rht10 and Rht3 and that they were all mutation-derived multiple alleles. It is thus speculated that dominant dwarfing genes are of 'multi-allelic polymorphism'. In other words, dominant dwarfing genes, which are ultra-dwarfing, are liable to develop by mutation into a group of multiple alleles with plant height enhanced to different extents and some may have a height close to the ideal plant height for wheat breeding. Therefore, these results offer a fundamentally new approach for the exploitation of dominant dwarfing sources in wheat breeding.
基金supported by the National Natural Science Founding of China (31401378)the Major Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences, China (2014CXZ10)+2 种基金the Youth Foundation of Shandong Academy of Agricultural Sciences, China (2014QNZ02)the Program for Youth Talent of Shandong Academy of Agricultural Sciences, China (118005)the Science & Technology Development Plan of Shandong Province, China (2014GSF121001)
文摘The NAM-B1 gene is a member of the NAC(NAM,ATAF,and CUC)transcription factor family and plays an important role in regulating wheat grain protein content(GPC).The ancestral NAM-B1 allele has been discovered in many tetraploid wild emmer(Triticum turgidum ssp.dicoccoides)accessions and few domesticated emmer accessions(T.turgidum ssp.dicoccum),however,it is rarely found in hexaploid bread wheat(Triticum aestivum L.).There are no systematic reports on the distribution of NAM-B1 alleles in Chinese wheat cultivars.In this study,the NAM-B1 alleles in 218 Chinese cultivars were investigated.The cultivars were collected from five major wheat regions(12 provinces),covering most of the winter wheat growing regions in China.The results showed that the NAM-B1 gene is present in 53(24.3%)cultivars and absent in the remaining 165(75.7%)cultivars.Further analysis revealed that in contrast to the wild-type allele,the NAM-B1 gene in Chinese wheat cultivars contained a 1-bp insertion in the coding region.This caused a frame-shift mutation and introduced a stop codon in the middle of the gene,rendering it non-functional.Polymorphisms were detected in DNA sequences of 21cultivars among these 53 cultivars.However,cD NA sequence analysis suggested that these variations in the exon region were not able to restore NAM-B1 gene(1-bp insertion)function.Thus,exploring the distribution of NAM-B1 gene variations(1-bp insertion and deletion)can provide some information for improving the quality of winter wheat in China and other countries.
文摘Single nucleotide polymorphisms and restriction digestion-based haplotype variations among 160 flood prone rice varieties were analyzed with enzymes Alu I and Cac8 I to generate polymorphisms at Sub1A and Sub1C loci (conferring submergence tolerance), respectively. Haplotype associated with phenotype was used to study the haplotype variations at Sub1A and Sub1C loci and to determine their functional influence on submergence tolerance and stem elongation. Three patterns at Sub1A locus, Sub1A0 (null allele), Sub1A1 (does not cut) and Sub1A2 (one SNP), and four patterns at Sub1C locus, Sub1C1, Sub1C2, Sub1C3 and Sub1C4, were generated. Both tolerant Sub1A1 and intolerant Sub1A2 had the same length, but the difference was presence of a restriction site in the Sub1A2, but absent at the Sub1A1. Further, two types of polymorphism were detected at the Sub1C, one included major length polymorphisms (165, 170 and 175 bp) and the other was a single restriction site at different position. Eight haplotypes (different combinations of the two loci), A1C1, A1C2, A1C4, A2C2, A2C4, A0C2, A0C3 and A0C4, were detected among 160 varieties. Haplotype A1C1 was comparatively more related to haplotypes A1C2 and A1C4, having the same Sub1A allele, and these haplotypes were found only in Bangladeshi, Sri Lankan and Indian varieties. Most tolerant varieties in A1C1 haplotype showed slow elongation, having tolerant specific Sub1A1 and Sub1C1 alleles. Further, the varieties Madabaru and Kottamali (A2C2) also showed moderate level of tolerance without Sub1A1 allele. These varieties were different with FR13A and also suspected to carry different novel tolerant genes at other loci. These materials could be used for hybridization with Sub1 varieties for pyramiding additional tolerant specific alleles into a single genotype for improving submergence tolerance in rice.
基金Key Laboratory of Cotton Biology Open Fund(CB2022A11)National Natural Science Foundation of China(32260510)+3 种基金Innovation talent Program in Sciences and Technologies of Xinjiang Production and Construction Corps,China(2021CB028)Key Programs for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops,China(2022NY01)Science and Technology Planning of Shuanghe city,Xinjiang Production and Construction Crops,China(2021NY02)key programs for science and technology development in agricultural field of Xinjiang Production and Construction Corps,China.
文摘Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowledge of the genetic and molecular mechanisms underlying cotton boll abscission traits has hindered genetic improvements.Results Pearson’s correlation analysis revealed a significant positive correlation between boll abscission rates 1(AR1)and boll abscission rates 2(AR2).A genome-wide association study was conducted on 145 loci that exhibited high polymorphism and were uniformly distributed across 26 chromosomes(pair).The study revealed 18,46,and 62 markers that were significantly associated with boll abscission,fiber quality,and yield traits(P<0.05),explaining 1.75%–7.13%,1.16%–9.58%,and 1.40%–5.44%of the phenotypic variation,respectively.Notably,the marker MON_SHIN-1584b was associated with the cotton boll abscission trait,whereas MON_CGR5732a was associated with cotton boll abscission and fiber quality traits.Thirteen of the marker loci identified in this study had been previously reported.Based on phenotypic effects,six typical cultivars with elite alleles related to cotton boll abscission,fiber quality,and yield traits were identified.These cultivars hold great promise for widespread utilization in breeding programs.Conclusions These results lay the foundation for understanding the molecular regulatory mechanism of cotton boll abscission and provide data for the future improvement of cotton breeding.
基金partly funded by the Ministry of Science and Technology of China (2016YFD0102003)the Chinese Ministry of Agriculture (2016ZX 08010003)
文摘Summary Precise replacement of an existing allele in commercial cultivars with an elite allele is a major goal in crop breeding. A single nucleotide polymorphism in the NRT1.1B gene between japonica and indica rice is responsible for the improved nitrogen use efficiency in indica rice. Herein, we precisely replaced the japonica NRT1.1B allele with the indica allele, in just one generation, using CRISPR/Cas9 gene-editing technology. No additional selective pressure was needed to enrich the precise replacement events.
基金supported by grants from the Ministry of Science and Technology of China (2011CB100304, 2009CB118300)
文摘Plant height is an important agronomic trait. Dramatic increase in wheat yield during the "green revolution" is mainly due to the widespread utilization of the Reduced height (Rht)-1gene. We analyzed the natural allelic variations of three homoeologous loci Rht-A1, Rht-B1, and Rht-D1 in Chinese wheat (Triticum aestivum L.) micro-core collections and the Rht-B1/D1 genotypes in over 1,500 bred cultivars and germplasms using a modified EcoTILLING. We identified six new Rht-A1 allelic variations (Rht-Alb-g), eight new Rht-B1 allelic variations (Rht-Blh-o), and six new Rht-D1 allelic variations (Rht-Dle-j). These allelic variations contain single nucleotide polymorphisms (SNPs) or small insertions and deletions in the coding or uncoding regions, involving two frame-shift mutations and 15 missenses. Of which, Rht-Dle and Rht-Dlh resulted in the loss of interactions of GID1-DELLA-GID2, Rht-Blicould increase plant height. We found that the Rht-Blh contains the same SNPs and 197 bp fragment insertion as reported in Rht-Blc. Further detection of Rht-Blh in Tibet wheat germplasms and wheat relatives indicated that Rht-Blc may originate from Rht-Blh. These results suggest rich genetic diversity at the Rht-1 loci and provide new resources for wheat breeding.
基金financially supported by National Science Foundation of China (31971876, U21A20224)Scientific Research Project of Beijing Municipal Commission of Education (KM201910020014)
文摘Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp.tritici(Bgt).A powdery mildew resistance gene Ml I^(W172)originated from WEW accession I^(W172)(G-797-M)is fine mapped in a 0.048 centimorgan(c M)genetic interval on 7 AL,corresponding to a genomic region spanning 233 kb,1 Mb and 800 kb in Chinese Spring,WEW Zavitan,and T.urartu G1812,respectively.Ml I^(W172)encodes a typical NLR protein NLRI^(W172)and physically locates in an NBS-LRR gene cluster.NLRI^(W172)is subsequently identified as a new allele of Pm60,and its function is validated by EMS mutagenesis and transgenic complementation.Haplotype analysis of the Pm60 alleles reveals diversifications in sequence variation in the locus and presence and absence variations(PAV)in WEW populations.Four common single nucleotide variations(SNV)are detected between the Pm60 alleles from WEW and T.urartu,indicative of speciation divergence between the two different wheat progenitors.The newly identified Pm60 alleles and haplotypes in WEW are anticipated to be valuable for breeding powdery mildew resistance wheat cultivars via marker-assisted selection.