期刊文献+
共找到39,159篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Methodology for the Application of Stratified Random Sampling with Optimum Allocation: The Case Study of Forest Bioenergy
1
作者 M.N.Tsatiris 《Journal of Environmental Science and Engineering(A)》 2012年第1期82-91,共10页
In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high ... In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high differentiations among the three strata in which this population could be classified. The rural population of Evros Prefecture (Greece) with criterion the mean altitude of settlements was classified in three strata, the mountainous, semi-mountainous and fiat population for the estimation of mean consumption of forest fuelwood for covering of heating and cooking needs in households of these three strata. The analysis of this methodology includes: (1) the determination of total size of sample for entire the rural population and its allocation to the various strata; (2) the investigation of effectiveness of stratification with the technique of analysis of variance (One-Way ANOVA); (3) the conduct of sampling research with the realization of face-to-face interviews in selected households and (4) the control of forms of the questionnaire and the analysis of data by using the statistical package for social sciences, SPSS for Windows. All data for the analysis of this methodology and its practical application were taken by the pilot sampling which was realized in each stratum. Relative paper was not found by the review of literature. 展开更多
关键词 Analysis of methodology stratified random sampling with optimum allocation rural population forest bioenergy.
下载PDF
Asset allocation: Evidence From China
2
作者 Hong Xu Xiaoping Zhu Jim Xu 《Chinese Business Review》 2004年第1期1-10,共10页
As a key part of a corporate's operation, Asset allocation is critical to its survival and development This paper uses Markowitz financial security portfolio theory on corporate's asset allocation, to derive the opt... As a key part of a corporate's operation, Asset allocation is critical to its survival and development This paper uses Markowitz financial security portfolio theory on corporate's asset allocation, to derive the optimal asset allocation for an corporate in China through case study. 展开更多
关键词 asset allocation portfolio theory operating assets
下载PDF
Channel assignment and power allocation for throughput improvement with PPO in B5G heterogeneous edge networks
3
作者 Xiaoming He Yingchi Mao +3 位作者 Yinqiu Liu Ping Ping Yan Hong Han Hu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期109-116,共8页
In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u... In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods. 展开更多
关键词 B5G Heterogeneous edge networks PPO Channel assignment Power allocation THROUGHPUT
下载PDF
Power Allocation for SE Maximization in Uplink Massive MIMO System Under Minimum Rate Constraint
4
作者 Wang Hui Yu Xiangbin +1 位作者 Liu Fuyuan Bai Jiawei 《China Communications》 SCIE CSCD 2024年第3期104-117,共14页
In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i... In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved. 展开更多
关键词 imperfect CSI massive MIMO minimum rate constraint power allocation spectral efficiency
下载PDF
Dynamic optimal allocation of energy storage systems integrated within photovoltaic based on a dual timescale dynamics model
5
作者 Kecun Li Zhenyu Huang +2 位作者 Youbo Liu Yaser Qudaih Junyong Liu 《Global Energy Interconnection》 EI CSCD 2024年第4期415-428,共14页
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations... Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs. 展开更多
关键词 Optimal allocation Profitability analysis PHOTOVOLTAIC Energy storage system Dual timescale dynamics model Spot market clearing
下载PDF
Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs
6
作者 Kai Wei Song Yu Qingxian Pan 《Computers, Materials & Continua》 SCIE EI 2024年第4期607-622,共16页
Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encoun... Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and efficiency.To address these issues,this study proposes a novel two-part invalid detection task allocation framework.In the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data.Compared to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public dataset.In the second step of the framework,task allocation modeling is performed using a twopart graph matching method.This phase introduces a P-queue KM algorithm that implements a more efficient optimization strategy.The allocation efficiency is improved by approximately 23.83%compared to the baseline method.Empirical results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation. 展开更多
关键词 Mobile crowdsourcing task allocation anomaly detection GAN attention mechanisms
下载PDF
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
7
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
下载PDF
Optimization of resource allocation in FDD massive MIMO systems
8
作者 Jun Cai Chuan Yin Youwei Ding 《Digital Communications and Networks》 SCIE CSCD 2024年第1期117-125,共9页
The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the... The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the pilot training and/or CsI feedback stage.In fact,the downlink communication generally includes three stages,i.e.,pilot training,CsI feedback,and data transmission.These three stages are mutually related and jointly determine the overall system performance.Unfortunately,there exist few studies on the reduction of csIT acquisition overhead from the global point of view.In this paper,we integrate the Minimum Mean Square Error(MMSE)channel estimation,Random Vector Quantization(RVQ)based limited feedback and Maximal Ratio Combining(MRC)precoding into a unified framework for investigating the resource allocation problem.In particular,we first approximate the covariance matrix of the quantization error with a simple expression and derive an analytical expression of the received Signal-to-Noise Ratio(SNR)based on the deterministic equivalence theory.Then the three performance metrics(the spectral efficiency,energy efficiency,and total energy consumption)oriented problems are formulated analytically.With practical system requirements,these three metrics can be collaboratively optimized.Finally,we propose an optimization solver to derive the optimal partition of channel coherence time.Experiment results verify the benefits of the proposed resource allocation schemes under three different scenarios and illustrate the tradeoff of resource allocation between three stages. 展开更多
关键词 Massive MIMO FDD CSIT Resource allocation
下载PDF
Learning-based user association and dynamic resource allocation in multi-connectivity enabled unmanned aerial vehicle networks
9
作者 Zhipeng Cheng Minghui Liwang +3 位作者 Ning Chen Lianfen Huang Nadra Guizani Xiaojiang Du 《Digital Communications and Networks》 SCIE CSCD 2024年第1期53-62,共10页
Unmanned Aerial Vehicles(UAvs)as aerial base stations to provide communication services for ground users is a flexible and cost-effective paradigm in B5G.Besides,dynamic resource allocation and multi-connectivity can ... Unmanned Aerial Vehicles(UAvs)as aerial base stations to provide communication services for ground users is a flexible and cost-effective paradigm in B5G.Besides,dynamic resource allocation and multi-connectivity can be adopted to further harness the potentials of UAVs in improving communication capacity,in such situations such that the interference among users becomes a pivotal disincentive requiring effective solutions.To this end,we investigate the Joint UAV-User Association,Channel Allocation,and transmission Power Control(J-UACAPC)problem in a multi-connectivity-enabled UAV network with constrained backhaul links,where each UAV can determine the reusable channels and transmission power to serve the selected ground users.The goal was to mitigate co-channel interference while maximizing long-term system utility.The problem was modeled as a cooperative stochastic game with hybrid discrete-continuous action space.A Multi-Agent Hybrid Deep Reinforcement Learning(MAHDRL)algorithm was proposed to address this problem.Extensive simulation results demonstrated the effectiveness of the proposed algorithm and showed that it has a higher system utility than the baseline methods. 展开更多
关键词 UAV-user association Multi-connectivity Resource allocation Power control Multi-agent deep reinforcement learning
下载PDF
Joint Task Allocation and Resource Optimization for Blockchain Enabled Collaborative Edge Computing
10
作者 Xu Wenjing Wang Wei +2 位作者 Li Zuguang Wu Qihui Wang Xianbin 《China Communications》 SCIE CSCD 2024年第4期218-229,共12页
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t... Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case. 展开更多
关键词 blockchain collaborative edge computing resource optimization task allocation
下载PDF
Adaptive Resource Allocation Algorithm for 5G Vehicular Cloud Communication
11
作者 Huanhuan Li Hongchang Wei +1 位作者 Zheliang Chen Yue Xu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2199-2219,共21页
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro... The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency. 展开更多
关键词 5G vehicular networks mobile cloud communication resource allocation channel capacity network connectivity communication radius objective function
下载PDF
A new quantum key distribution resource allocation and routing optimization scheme
12
作者 毕琳 袁晓同 +1 位作者 吴炜杰 林升熙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期244-259,共16页
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation env... Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others. 展开更多
关键词 quantum key distribution(QKD) resource allocation key storage routing algorithm
下载PDF
MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge
13
作者 Tengda Li Gang Wang Qiang Fu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2559-2586,共28页
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor... Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA. 展开更多
关键词 Deep reinforcement learning dynamic task allocation intelligent decision-making multi-agent system MADDPG-D2 algorithm
下载PDF
A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning
14
作者 Jingbo Zhang Qiong Wu +1 位作者 Pingyi Fan Qiang Fan 《Computers, Materials & Continua》 SCIE EI 2024年第11期1953-1998,共46页
Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.Howe... Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.However,with the development of complex application scenarios such as the Internet of Things(IoT)and Smart Earth,the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands.Therefore,joint resource optimization may be the key solution to the scaling problem.This paper simultaneously addresses the multifaceted challenges of computation and communication,with the growing multiple resource demands.We systematically review the joint allocation strategies for different resources(computation,data,communication,and network topology)in FEL,and summarize the advantages in improving system efficiency,reducing latency,enhancing resource utilization,and enhancing robustness.In addition,we present the potential ability of joint optimization to enhance privacy preservation by reducing communication requirements,indirectly.This work not only provides theoretical support for resource management in federated learning(FL)systems,but also provides ideas for potential optimal deployment in multiple real-world scenarios.By thoroughly discussing the current challenges and future research directions,it also provides some important insights into multi-resource optimization in complex application environments. 展开更多
关键词 Federated edge learning resource allocation communication resource computing resource network topology
下载PDF
Joint Allocation of Computing and Connectivity Resources in Survivable Inter-Datacenter Elastic Optical Networks
15
作者 Yang Tao Li Yang Chen Xue 《China Communications》 SCIE CSCD 2024年第8期172-181,共10页
Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to ... Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to realize joint allocation of computing and connectivity resources in survivable inter-datacenter EONs,a survivable routing,modulation level,spectrum,and computing resource allocation algorithm(SRMLSCRA)algorithm and three datacenter selection strategies,i.e.Computing Resource First(CRF),Shortest Path First(SPF)and Random Destination(RD),are proposed for different scenarios.Unicast and manycast are applied to the communication of computing requests,and the routing strategies are calculated respectively.Simulation results show that SRMLCRA-CRF can serve the largest amount of protected computing tasks,and the requested calculation blocking probability is reduced by 29.2%,28.3%and 30.5%compared with SRMLSCRA-SPF,SRMLSCRA-RD and the benchmark EPS-RMSA algorithms respectively.Therefore,it is more applicable to the networks with huge calculations.Besides,SRMLSCRA-SPF consumes the least spectrum,thereby exhibiting its suitability for scenarios where the amount of calculation is small and communication resources are scarce.The results demonstrate that the proposed methods realize the joint allocation of computing and connectivity resources,and could provide efficient protection for services under single-link failure and occupy less spectrum. 展开更多
关键词 computing and connectivity interdatacenter networks joint resource allocation service protection
下载PDF
Joint Optimization for on-Demand Deployment of UAVs and Spectrum Allocation in UAVs-Assisted Communication
16
作者 Chen Yong Liao Naiwen +2 位作者 WangWei Zhang Xianyu Zhang Yu 《China Communications》 SCIE CSCD 2024年第7期278-290,共13页
To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAV... To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAVs is proposed,which is modeled as a mixed-integer non-convex optimization problem(MINCOP).An algorithm to estimate the minimum number of required UAVs is firstly proposed based on the pre-estimation and simulated annealing.The MINCOP is then decomposed into three sub-problems based on the block coordinate descent method,including the spectrum allocation of UAVs,the association between UAVs and ground users,and the deployment of UAVs.Specifically,the optimal spectrum allocation is derived based on the interference mitigation and channel reuse.The association between UAVs and ground users is optimized based on local iterated optimization.A particle-based optimization algorithm is proposed to resolve the subproblem of the UAVs deployment.Simulation results show that the proposed method could effectively improve the minimum transmission rate of UAVs as well as user fairness of spectrum allocation. 展开更多
关键词 block coordinate descent method on-demand deployment spectrum allocation UAVs-assisted Communication
下载PDF
Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit
17
作者 Tong Gan Shuo Dong +1 位作者 Shiyou Wang Jiaxin Li 《Computers, Materials & Continua》 SCIE EI 2024年第7期643-660,共18页
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on... With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios. 展开更多
关键词 UAV track inspection dispersed computing resource allocation deep reinforcement learning Markov decision process
下载PDF
An Adaptive Hybrid Optimization Strategy for Resource Allocation in Network Function Virtualization
18
作者 Chumei Wen Delu Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1617-1636,共20页
With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both local... With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation. 展开更多
关键词 NFV resource allocation decision-making optimization service function
下载PDF
Resource Allocation for IRS Assistedmm Wave Wireless Powered Sensor Networks with User Cooperation
19
作者 Yonghui Lin Zhengyu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期663-677,共15页
In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET... In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not. 展开更多
关键词 Intelligent reflecting surface millimeter wave wireless powered sensor networks user cooperation resource allocation
下载PDF
Resource Allocation in Multi-User Cellular Networks:A Transformer-Based Deep Reinforcement Learning Approach
20
作者 Zhao Di Zheng Zhong +2 位作者 Qin Pengfei Qin Hao Song Bin 《China Communications》 SCIE CSCD 2024年第5期77-96,共20页
To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlin... To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlink cellular scenario with the aim of maximizing system spectral efficiency while guaranteeing user fairness.We first model the MSMURA problem as a dual-sequence decision-making process,and then solve it by a novel Transformerbased deep reinforcement learning(TDRL)approach.Specifically,the proposed TDRL approach can be achieved based on two aspects:1)To adapt to the dynamic wireless environment,the proximal policy optimization(PPO)algorithm is used to optimize the multi-slot RA strategy.2)To avoid co-channel interference,the Transformer-based PPO algorithm is presented to obtain the optimal multi-user RA scheme by exploring the mapping between user sequence and resource sequence.Experimental results show that:i)the proposed approach outperforms both the traditional and DRL methods in spectral efficiency and user fairness,ii)the proposed algorithm is superior to DRL approaches in terms of convergence speed and generalization performance. 展开更多
关键词 dynamic resource allocation multi-user cellular network spectrum efficiency user fairness
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部