基于GPS精密点定位(precise point positioning,PPP)技术,利用IGS的精密星历数据编制软件处理了在Amery冰架获取的连续5d的GPS卫星跟踪观测资料,初步获得了冰架前端观测点处的冰流速度和冰流方向。根据定位解算出的高程系列的周期变化,...基于GPS精密点定位(precise point positioning,PPP)技术,利用IGS的精密星历数据编制软件处理了在Amery冰架获取的连续5d的GPS卫星跟踪观测资料,初步获得了冰架前端观测点处的冰流速度和冰流方向。根据定位解算出的高程系列的周期变化,初步推求出观测点处的海潮周日变化参数。研究成果可为后续的物质平衡计算提供依据。展开更多
As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for...As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for ISW identification based on freezing point at the sea surface, and we study spatial distribution of ISW in front of the Amery Ice Shelf (AIS) and its flow path in Prydz Bay by analyzing hydrographic data from Australian cruises in 2001 and 2002, as well as Chinese cruises in 2003, 2005, 2006, and 2008, all being made in the austral summer. The relatively cold and fresh ISW occurred as several discrete water blocks with cold cores in front of the AIS, within the depth range of 100?600 m, under the seasonal thermocline. ISW had obvious temporal and spatial variations and the spatial distribution pattern changed greatly after 2005. Most of ISW was concentrated west of 73°E during 2001 to 2003 and 2006, but it was widespread to east in 2005 and 2008. In all observation years, a small amount of cold ISW always occurs at the west end of the AIS front section, where the coldest ISW in the whole section also occurred in 2001, 2003 and 2006. Considering general cyclonic circulation pattern under the AIS, the ISW flowing out from west end of the AIS front might have experienced the longest cooling period under ice shelf, so it would have the lowest temperature. Analysis of data from meridian sections in Prydz Bay in 2003 implied that ISW in the west could spread north to the continental break along the east flank of the Fram Bank near 70.5°E, mix with the upwelling Circumpolar Deep Water and possibly contribute to the formation of AABW.展开更多
The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains continental ice from an area of more than one million square kilometres through a section of coastline that represents approximately 2% of the...The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains continental ice from an area of more than one million square kilometres through a section of coastline that represents approximately 2% of the total circumference of the Antarctic continent. In this study, we used a time series of ENVISAT ASAR images from 2004-2012 and flow lines derived from surface velocity data to monitor the changes in 12 tributaries of the Amery Ice Shelf front. The results show that the Amery Ice Shelf has been expanding and that the rates of expansion differ across the shelf. The highest average annual rate of advance from 2004-2012 was 3.36 m'd-1 and the lowest rate was 1.65 m.d-1. The rates in 2009 and 2010 were generally lower than those in other years. There was a low correlation between the rate of expansion and the atmospheric temperature recorded at a nearby research station, however the mechanism of the relationship was complex. This study shows that the expansion of the Amery Ice Shelf is slowing down, reflecting a changing trend in climate and ice conditions in East Antarctica.展开更多
Accounting for about half of mass loss in Antarctic,glacier calving is an important ablation process for the ice sheet(Liu et al.,2015).Thanks to the revolutionized era of satellite remote sensing,the 21st century wit...Accounting for about half of mass loss in Antarctic,glacier calving is an important ablation process for the ice sheet(Liu et al.,2015).Thanks to the revolutionized era of satellite remote sensing,the 21st century witnessed dozens of prominent calving events.However,calving could occur as a natural behavior of the glacier to maintain itself in a steady state,rather than forced by external environment factors.展开更多
Conductivity, temperature and depth(CTD) data collected along a zonal hydrographic section from the northern margin of the Amery Ice Shelf on 25-27 February 2008 by the 24th Chinese National Antarctic Research Exped...Conductivity, temperature and depth(CTD) data collected along a zonal hydrographic section from the northern margin of the Amery Ice Shelf on 25-27 February 2008 by the 24th Chinese National Antarctic Research Expedition (CHINARE) cruise in the 2007/2008 austral summer are analyzed to study thermohaline structures. Analysis reveals warm subsurface water in a limited area around the east end of the northern margin, where the temperature, salinity and density have east-west gradients in the surface layer of the hydrographic section. The localization of the warm subsurface water and the causes of the CTD gradients in the 'surface layer are discussed. In addition, the results from these CTD data analyses are compared with those from the 22nd CHINARE cruise in the 2005/2006 austral summer. This comparison revealed that the thermoclines and haloclines had deepened and their strengths weakened in the 2007/2008 austral summer. The difference between the two data sets and the cause for it can be reasonably explained and attributed to the change in ocean-ice-atmosphere interactions at the northern margin of the Amery Ice Shell展开更多
Delineation of the grounding line(GL) is necessary for calculating the mass balance of Antarctica, but GL measurements for most of the continent remain at a relatively coarse level. We used Sentinel-1 constellation da...Delineation of the grounding line(GL) is necessary for calculating the mass balance of Antarctica, but GL measurements for most of the continent remain at a relatively coarse level. We used Sentinel-1 constellation data to map the GL of the Amery Ice Shelf(AIS) using double-differential synthetic aperture radar interferometry. The ice thickness anomaly deduced from hydrostatic equilibrium and existing Antarctic GL products is compared with our result. With this new and very accurate GL, we detected new ice rises in the north of the AIS. Our new measurement shows no major change of the AIS GL, particularly in the southernmost part.展开更多
The main activities in the joint expedition between CHINARE and ANARE on Amery ice shelf are introduced. Five day continuous GPS observation data collected on the site which locates at the frontal part of Amery ice sh...The main activities in the joint expedition between CHINARE and ANARE on Amery ice shelf are introduced. Five day continuous GPS observation data collected on the site which locates at the frontal part of Amery ice shelf was processed with precise point positioning (PPP) technology based on precise products from IGS. Velocity of the surface ice flow on Amery can be derived from the PPP solution. Preliminary result shows that the surface ice flow velocity of the site is 2.25 meters per day, the motion direction is northeastward. Semidiurnal oceanic tide and diurnal oceanic tide signal of that site can be recovered from the height variation series of PPP solution. These above solutions can be used to the consequent mass balance calculation.展开更多
The Amery Ice Shelf is the largest ice shelf in East Antarctica. A new DEM was generated for this ice shelf, using kriging to interpolate the data from ICE- Sat altimetry and the AIS-DEM. The ice thickness distributio...The Amery Ice Shelf is the largest ice shelf in East Antarctica. A new DEM was generated for this ice shelf, using kriging to interpolate the data from ICE- Sat altimetry and the AIS-DEM. The ice thickness distribution map is converted from the new DEM, assuming hydrostatic equilibrium. The Amery Ice Shelf marine ice, up to 230 m thick, is concentrated in the northwest of the ice shelf. The volume of the marine ice is 2.38 × 10^3 km^3 and accounts for about 5.6% of the shelf volume.展开更多
Hydrological character and Sea-current profiles structure are studied and analyzed in sea-area of the front of Amery Ice Shelf, Prydz Bay with LADCP, CTD data. These LADCP, CTD data were acquired during the 19th Chine...Hydrological character and Sea-current profiles structure are studied and analyzed in sea-area of the front of Amery Ice Shelf, Prydz Bay with LADCP, CTD data. These LADCP, CTD data were acquired during the 19th Chinese Antarctic Scientific Expedition. Results of this study agree with that, there exist four different kinds of water masses in the area of the front of Amery Ice Shelf in the summer of Antarctica. Current distribution presents a semi-circumfluence which flows in at the east and flows out in the west. Moreover, clockwise and anti - clockwise vortices were found in upper layer and mid-layer in the Prydz Bay. Western areas of these anticlockwise vortices are positions of inflows from Prydz Bay to Amery Ice Shelf. The source of these inflows is the coastal westward current originated in the east of Prydz Bay. All these characteristics come down to the pattern of circumfluence, ice melt rate under Ice Shelf, scale of Ice Shelf water production and form of water exchanges between area of Ice Shelf and area of Prydz Bay.展开更多
Tidal motion is the source of short-term vertical motion that an ice shelf experiences, and hence has a significant impact on ice shelves. During the 2003/2004 Austral summer season, five days of GPS measurements were...Tidal motion is the source of short-term vertical motion that an ice shelf experiences, and hence has a significant impact on ice shelves. During the 2003/2004 Austral summer season, five days of GPS measurements were carried out on the front of the Amery Ice Shelf (AIS), East Antarctica, by the 20th Chinese National Antarctica Research Expedition (CHINARE). The GPS data was processed using GAMIT/GLOBK software with 2-hour static data segment and the vertical precision is less than 0.18 m. To verify our results for the vertical component, we compare the ice shelf GPS tidal signal with a tidal result derived from tide gauge measurements at China's Zhongshan Station on Antarctica. Comparison of the GPS results with the tide gauge were in good agreement in amplitude at the few cm level, which indicates that the tide under the front of Amery Ice Shelf is irregular semidiurnal tide, the maximal tidal differences is approximately 2 m. GPS data can be used to validate the ocean tide model around the Antarctic area and such studies are important to improve our knowledge of the Antarctic ice shelf mass balance and dynamical models of ice sheet/ocean interaction.展开更多
文摘基于GPS精密点定位(precise point positioning,PPP)技术,利用IGS的精密星历数据编制软件处理了在Amery冰架获取的连续5d的GPS卫星跟踪观测资料,初步获得了冰架前端观测点处的冰流速度和冰流方向。根据定位解算出的高程系列的周期变化,初步推求出观测点处的海潮周日变化参数。研究成果可为后续的物质平衡计算提供依据。
基金Supported by the National Natural Science Foundation of China(No.40676011)the Key Technology Research and Development Program of China(No.2006BAB18B02)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20100132110016)
文摘As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for ISW identification based on freezing point at the sea surface, and we study spatial distribution of ISW in front of the Amery Ice Shelf (AIS) and its flow path in Prydz Bay by analyzing hydrographic data from Australian cruises in 2001 and 2002, as well as Chinese cruises in 2003, 2005, 2006, and 2008, all being made in the austral summer. The relatively cold and fresh ISW occurred as several discrete water blocks with cold cores in front of the AIS, within the depth range of 100?600 m, under the seasonal thermocline. ISW had obvious temporal and spatial variations and the spatial distribution pattern changed greatly after 2005. Most of ISW was concentrated west of 73°E during 2001 to 2003 and 2006, but it was widespread to east in 2005 and 2008. In all observation years, a small amount of cold ISW always occurs at the west end of the AIS front section, where the coldest ISW in the whole section also occurred in 2001, 2003 and 2006. Considering general cyclonic circulation pattern under the AIS, the ISW flowing out from west end of the AIS front might have experienced the longest cooling period under ice shelf, so it would have the lowest temperature. Analysis of data from meridian sections in Prydz Bay in 2003 implied that ISW in the west could spread north to the continental break along the east flank of the Fram Bank near 70.5°E, mix with the upwelling Circumpolar Deep Water and possibly contribute to the formation of AABW.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant no.20120003110030)the China Postdoctoral Science Foundation (Grant no.201104063)+1 种基金the Open Fund of the SOA Key Laboratory for Polar Science (Grant no.KP201101)the Fundamental Research Funds for the Central Universities (Grant no.105560GR)
文摘The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains continental ice from an area of more than one million square kilometres through a section of coastline that represents approximately 2% of the total circumference of the Antarctic continent. In this study, we used a time series of ENVISAT ASAR images from 2004-2012 and flow lines derived from surface velocity data to monitor the changes in 12 tributaries of the Amery Ice Shelf front. The results show that the Amery Ice Shelf has been expanding and that the rates of expansion differ across the shelf. The highest average annual rate of advance from 2004-2012 was 3.36 m'd-1 and the lowest rate was 1.65 m.d-1. The rates in 2009 and 2010 were generally lower than those in other years. There was a low correlation between the rate of expansion and the atmospheric temperature recorded at a nearby research station, however the mechanism of the relationship was complex. This study shows that the expansion of the Amery Ice Shelf is slowing down, reflecting a changing trend in climate and ice conditions in East Antarctica.
基金The National Natural Science Foundation of China under contract Nos 41830536,41925027 and 41676182the UKChina Joint Research and Innovation Partnership Fund Ph D Placement Program of China Scholarship Council(CSC)。
文摘Accounting for about half of mass loss in Antarctic,glacier calving is an important ablation process for the ice sheet(Liu et al.,2015).Thanks to the revolutionized era of satellite remote sensing,the 21st century witnessed dozens of prominent calving events.However,calving could occur as a natural behavior of the glacier to maintain itself in a steady state,rather than forced by external environment factors.
基金supported by the National Basic Research Priorities Program of China (Grant no.2010CB950301)the National Natural Science Foundation of China (Grant no.40376009)+2 种基金the National Key Technology Research and Development Program of China during the 11th Five Year Plan (Grant no. 2006BAB08B02)the Program of Special Fund Basic ResearchOperating Expenses of First Institute of Oceanography,SOA (Grant no. FIO2010T01)
文摘Conductivity, temperature and depth(CTD) data collected along a zonal hydrographic section from the northern margin of the Amery Ice Shelf on 25-27 February 2008 by the 24th Chinese National Antarctic Research Expedition (CHINARE) cruise in the 2007/2008 austral summer are analyzed to study thermohaline structures. Analysis reveals warm subsurface water in a limited area around the east end of the northern margin, where the temperature, salinity and density have east-west gradients in the surface layer of the hydrographic section. The localization of the warm subsurface water and the causes of the CTD gradients in the 'surface layer are discussed. In addition, the results from these CTD data analyses are compared with those from the 22nd CHINARE cruise in the 2005/2006 austral summer. This comparison revealed that the thermoclines and haloclines had deepened and their strengths weakened in the 2007/2008 austral summer. The difference between the two data sets and the cause for it can be reasonably explained and attributed to the change in ocean-ice-atmosphere interactions at the northern margin of the Amery Ice Shell
基金supported by National Program on Key Basic Research Project (Program 973, Grant no. 2013CBA01804)National Natural Science Foundation of China (Grant nos. 41531069 and 41376187)Chinese Polar Environment Comprehensive Investigation & Assessment Program (Grant no. CHINARE2016-02-04)
文摘Delineation of the grounding line(GL) is necessary for calculating the mass balance of Antarctica, but GL measurements for most of the continent remain at a relatively coarse level. We used Sentinel-1 constellation data to map the GL of the Amery Ice Shelf(AIS) using double-differential synthetic aperture radar interferometry. The ice thickness anomaly deduced from hydrostatic equilibrium and existing Antarctic GL products is compared with our result. With this new and very accurate GL, we detected new ice rises in the north of the AIS. Our new measurement shows no major change of the AIS GL, particularly in the southernmost part.
文摘The main activities in the joint expedition between CHINARE and ANARE on Amery ice shelf are introduced. Five day continuous GPS observation data collected on the site which locates at the frontal part of Amery ice shelf was processed with precise point positioning (PPP) technology based on precise products from IGS. Velocity of the surface ice flow on Amery can be derived from the PPP solution. Preliminary result shows that the surface ice flow velocity of the site is 2.25 meters per day, the motion direction is northeastward. Semidiurnal oceanic tide and diurnal oceanic tide signal of that site can be recovered from the height variation series of PPP solution. These above solutions can be used to the consequent mass balance calculation.
文摘The Amery Ice Shelf is the largest ice shelf in East Antarctica. A new DEM was generated for this ice shelf, using kriging to interpolate the data from ICE- Sat altimetry and the AIS-DEM. The ice thickness distribution map is converted from the new DEM, assuming hydrostatic equilibrium. The Amery Ice Shelf marine ice, up to 230 m thick, is concentrated in the northwest of the ice shelf. The volume of the marine ice is 2.38 × 10^3 km^3 and accounts for about 5.6% of the shelf volume.
基金funded by the National Science Funded Key Project(Grant No.40231013).
文摘Hydrological character and Sea-current profiles structure are studied and analyzed in sea-area of the front of Amery Ice Shelf, Prydz Bay with LADCP, CTD data. These LADCP, CTD data were acquired during the 19th Chinese Antarctic Scientific Expedition. Results of this study agree with that, there exist four different kinds of water masses in the area of the front of Amery Ice Shelf in the summer of Antarctica. Current distribution presents a semi-circumfluence which flows in at the east and flows out in the west. Moreover, clockwise and anti - clockwise vortices were found in upper layer and mid-layer in the Prydz Bay. Western areas of these anticlockwise vortices are positions of inflows from Prydz Bay to Amery Ice Shelf. The source of these inflows is the coastal westward current originated in the east of Prydz Bay. All these characteristics come down to the pattern of circumfluence, ice melt rate under Ice Shelf, scale of Ice Shelf water production and form of water exchanges between area of Ice Shelf and area of Prydz Bay.
基金supported by the National Natural Science Foundation of China (40806076)State Key Laboratory of Cryospheric Science, Chinese Arcticand Antarctic Administration (20070206)Key Labora-tory of Polar Surveying and Mapping, State Bureau of Sur-veying and Mapping (200805)
文摘Tidal motion is the source of short-term vertical motion that an ice shelf experiences, and hence has a significant impact on ice shelves. During the 2003/2004 Austral summer season, five days of GPS measurements were carried out on the front of the Amery Ice Shelf (AIS), East Antarctica, by the 20th Chinese National Antarctica Research Expedition (CHINARE). The GPS data was processed using GAMIT/GLOBK software with 2-hour static data segment and the vertical precision is less than 0.18 m. To verify our results for the vertical component, we compare the ice shelf GPS tidal signal with a tidal result derived from tide gauge measurements at China's Zhongshan Station on Antarctica. Comparison of the GPS results with the tide gauge were in good agreement in amplitude at the few cm level, which indicates that the tide under the front of Amery Ice Shelf is irregular semidiurnal tide, the maximal tidal differences is approximately 2 m. GPS data can be used to validate the ocean tide model around the Antarctic area and such studies are important to improve our knowledge of the Antarctic ice shelf mass balance and dynamical models of ice sheet/ocean interaction.