Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment o...Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte–derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42–induced Alzheimer's disease–like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease–like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42–induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct...Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.展开更多
Background:Jiaohong pills(JHP)consist of Pericarpium Zanthoxyli(PZ)and Radix Rehmanniae,two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive dec...Background:Jiaohong pills(JHP)consist of Pericarpium Zanthoxyli(PZ)and Radix Rehmanniae,two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive decline and memory impairment.However,the precise mechanisms underlying the beneficial effects remain elusive.Here,research studies were conducted to investigate and validate the therapeutic effects of JHP on Alzheimer's disease.Methods:BV-2 cell inflammation was induced by lipopolysaccharide.AD mice were administered amyloid-β(Aβ).Behavioral experiments were used to evaluate learning and memory ability.The levels of nitric oxide(NO),tumor necrosis factor-alpha(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)were detected using enzymelinked immunosorbent assay(ELISA).The protein expressions of inducible nitric oxide synthase(iNOS)and the phosphorylation level of mitogen-activated protein kinase(MAPK)and nuclear factor kappa-B(NF-κB)were detected using Western blot.Nissl staining was used to detect neuronal degeneration.Results:The results demonstrated that an alcoholic extract of PZ significantly decreased the levels of NO,IL-1β,TNF-α,and iNOS;increased the expression level of IL-10;and significantly decreased the phosphorylation levels of MAPK and NF-κB.These inhibitory effects were further confirmed in the AD mouse model.Meanwhile,JHP improved learning and memory function in AD mice,reduced neuronal damage,and enriched the Nissl bodies in the hippocampus.Moreover,IL-1βand TNF-αin the cortex were significantly downregulated after JHP administration,whereas IL-10showed increased expression.Conclusions:It was found that JHP reduced neuroinflammatory response in AD mice by targeting the MAPK/NF-κB signaling pathway.展开更多
Astrocytes' roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and...Astrocytes' roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/a7-nAChR (αT-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic).展开更多
Lycium barbarum(LB)is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions,such as antioxidation,neuroprotection,and immune modulation.One of the main mechanisms ...Lycium barbarum(LB)is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions,such as antioxidation,neuroprotection,and immune modulation.One of the main mechanisms of Alzheimer’s disease is that microglia activated by amyloid beta(Aβ)transform from the resting state to an M1 state and release pro-inflammatory cytokines to the surrounding environment.In the present study,immortalized microglial cells were pretreated with L.barbarum extract for 1 hour and then treated with oligomeric Aβfor 23 hours.The results showed that LB extract significantly increased the survival of oligomeric Aβ-induced microglial cells,downregulated the expression of M1 pro-inflammatory markers(inducible nitric oxide synthase,tumor necrosis factorα,interleukin-6,and interleukin-1β),and upregulated the expression of M2 anti-inflammatory markers(arginase-1,chitinase-like protein 3,and interleukin-4).LB extract also inhibited the oligomeric Aβ-induced secretion of tumor necrosis factorα,interleukin-6,and interleukin-1βin microglial cells.The results of in vitro cytological experiments suggest that,in microglial cells,LB extract can inhibit oligomeric Aβ-induced M1 polarization and concomitant inflammatory reactions,and promote M2 polarization.展开更多
Amyloid-β (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease (AD), is generated by β-secretase- and y-secretase-mediated sequential proteolysis of the amyloid precursor protein (AP...Amyloid-β (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease (AD), is generated by β-secretase- and y-secretase-mediated sequential proteolysis of the amyloid precursor protein (APP). The aspartic protease, β -site APP cleavage enzyme (BACE), has been identified as the main β-secretase in brain but the regulation of its activity is largely unclear. Here, we demonstrate that both BACE activity and subsequent Aβ production are enhanced after stimulation of receptor tyrosine kinases (RTKs), such as the receptors for epidermal growth factor (EGF) and nerve growth factor (NGF), in cultured cells as well as in mouse hippocampus. Furthermore, stimulation of RTKs also induces BACE internalization into endosomes and Golgi apparatus. This enhancement of BACE activity and A β production upon RTK activation could be specifically inhibited by Src family kinase inhibitors and by depletion of endogenous c-Src with RNAi, and could be mimicked by over-expressed c-Src. Moreover, blockage of BACE internalization by a dominant negative form of Rab5 also abolished the enhancement of BACE activity and Aβ production, indicating the requirement of BACE internalization for the enhanced activity. Taken together, our study presents evidence that BACE activity and Aβ production are under the regulation of RTKs and this is achieved via RTK-stimulated BACE internalization, and suggests that an aberration of such regulation might contribute to pathogenic Aβ production.展开更多
Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative...Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative disorders to sys- temic amyloidoses. In this review, we first introduce the common structural features of amyloid fibrils and the amyloid fibrillation kinetics determined from experimental studies. Then, we discuss the structural models of Alzheimer's amyloid- β (Aβ) fibrils derived from solid-state nuclear magnetic resonance spectroscopy. On the computational side, molecular dynamics simulations can provide atomic details of structures and the underlying oligomerization mechanisms. We finally summarize recent progress in atomistic simulation studies on the oligomerization of β (including full-length Af and its fragments) and the influence of carbon nanoparticles.展开更多
Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer’s disease mouse models and patients,and that it plays a vital role in the learning and memory.However,the u...Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer’s disease mouse models and patients,and that it plays a vital role in the learning and memory.However,the underlying mechanisms of fibroblast growth factor 13 in Alzheimer’s disease remain unclear.In this study,we established rat models of Alzheimer’s disease by stereotaxic injection of amyloid-β(Aβ_(1-42))-induced into bilateral hippocampus.We also injected lentivirus containing fibroblast growth factor 13 into bilateral hippocampus to overexpress fibroblast growth factor 13.The expression of fibroblast growth factor 13 was downregulated in the brain of the Alzheimer’s disease model rats.After overexpression of fibroblast growth factor 13,learning and memory abilities of the Alzheimer’s disease model rats were remarkably improved.Fibroblast growth factor 13 overexpression increased brain expression levels of oxidative stress-related markers glutathione,superoxide dismutase,phosphatidylinositol-3-kinase,AKT and glycogen synthase kinase 3β,and anti-apoptotic factor BCL.Furthermore,fibroblast growth factor 13 overexpression decreased the number of apoptotic cells,expression of pro-apoptotic factor BAX,cleaved-caspase 3 and amyloid-βexpression,and levels of tau phosphorylation,malondialdehyde,reactive oxygen species and acetylcholinesterase in the brain of Alzheimer’s disease model rats.The changes were reversed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings suggest that overexpression of fibroblast growth factor 13 improved neuronal damage in a rat model of Alzheimer’s disease through activation of the phosphatidylinositol-3-kinase/AKT/glycogen synthase kinase 3βsignaling pathway.展开更多
Although amyloid-β peptide is considered neurotoxic, it may mediate several physiological processes during embryonic development and in the adult brain. The pathological function of amyloid-β peptide has been extens...Although amyloid-β peptide is considered neurotoxic, it may mediate several physiological processes during embryonic development and in the adult brain. The pathological function of amyloid-β peptide has been extensively studied due to its implication in Alzheimer’s disease, but its physiological function remains poorly understood. Amyloid-β peptide can be detected in non-aggregated (monomeric) and aggregated (oligomeric and fibrillary) forms. Each form has different cytotoxic and/or physiological properties, so amyloid-β peptide and its role in Alzheimer’s disease need to be studied further. Neural stem cells and neural precursor cells are good tools for the study on neurodegenerative diseases and can provide future therapeutic applications in diseases such as Alzheimer’s disease. In this review, we provide an outline of the effects of amyloid-β peptide, in monomeric and aggregated forms, on the biology of neural stem cells/neural precursor cells, and discuss the controversies. We also describe the possible molecular targets that could be implicated in these effects, especially GSK3β. A better understanding of amyloid-β peptide (both physiological and pathological), and the signaling pathways involved are essential to advance the field of Alzheimer’s disease.展开更多
In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation...In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation of P-glycoprotein.The amyloid cascade hypothesis describes amyloid-βas the central cause of Alzheimer’s disease neuropathology.Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-βand their potential association in the pathological process of Alzheimer’s disease is critical.Herein,we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age.The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age.Decreased sphingomyelin levels,increased ceramide levels,and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice.Similar results were observed in the Alzheimer’s disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42.In human cerebral microvascular endothelial cells,neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment.Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide.Together,these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway.These studies may serve as new pursuits for the development of anti-Alzheimer’s disease drugs.展开更多
Background:Amyloid-β(Aβ)metabolic imbalance is the pivotal pathogenesis leading to Alzheimer’s disease(AD).In sporadic AD,decreased clearance of Aβimportantly contributes to the onset and progression.Astrocytes,th...Background:Amyloid-β(Aβ)metabolic imbalance is the pivotal pathogenesis leading to Alzheimer’s disease(AD).In sporadic AD,decreased clearance of Aβimportantly contributes to the onset and progression.Astrocytes,the most abundant cell type in the brain,are mainly responsible for maintaining neuronal homeostasis.Most recently,it has been demonstrated that astrocytes play an important role in regulating Aβmetabolism.Icariin(ICA),a flavonoid glucoside extracted from the traditional Chinese herb Epimedium brevicornu,has been shown to produce protective effects against AD by decreasing Aβproduction.However,it remains unclear whether ICA regulates cellular Aβclearance in the astrocytes.Objective:To examine the regulatory effects of ICA on Aβremoval by astrocytes and explore the mechanisms of its actions.Methods:Uptake and subsequent degradation of Aβby astrocytes were evaluated using a combination of enzyme-linked immunosorbent assay(ELISA)and laser confocal microscopy.The effects of oligomer Aβ(oAβ1-42)and/or ICA on the expressions of sirt6 in the primary astrocytes were examined using western blotting and q-PCR assays.The expression of autophagy markers including P62 and LC3-Ⅱ,and phosphorylated-mTOR were measured by western blotting.In order to determine whether sirt6 is involved in the intracellular Aβmetabolism,sirt6 was knocked down using lentiviral vectors containing sirt6-shRNAs and autophagy levels were assessed by western blotting.Results:①In primary astrocytes,ICA not only significantly increased Aβinternalization but also obviously accelerated its degradation in a concentration-dependent manner.②Treatment of astrocytes with Aβ1-42 at 1μmol·L-1 significantly down-regulated the expression of sirt6,which was rescued by ICA.In addition,ICA at 20μmol·L-1 significantly increased the expression of LC3-Ⅱand markedly decreased the expression of P62 and phosphorylated-mTOR in primary astrocytes.③Sirt6 knockdown in primary astrocytes resulted in decreased cellular Aβuptake and degradation.Simultaneously,silencing of sirt6 in astrocytes increased P62 levels and reduced LC3-Ⅱand phosphorylated-mTOR levels.Conclusion:Taken together,our results demonstrate that sirt6 plays an important role in Aβmetabolism in astrocytes via induction of autophagy.ICA is a potential drug for treatment of AD as it upregulates cellular sirt6.展开更多
Cannabidiol (CBD), one of the most studied phytocannabinoids, is non-psychotropic and can induce protective effects on the central nervous system against acute and chronic brain injury. Interestingly, CBD inhibits pro...Cannabidiol (CBD), one of the most studied phytocannabinoids, is non-psychotropic and can induce protective effects on the central nervous system against acute and chronic brain injury. Interestingly, CBD inhibits processes relating to amyloid beta (Aβ)-induced neurotoxicity in mouse models of Alzheimer’s disease, though the detailed molecular mechanism underlying the CBD neurotoxicity modulation is not fully understood. In this study, using atomic force microscopy, we find that CBD promotes the aggregation of Aβ peptides, enhancing the formation of Aβ oligomers, also known as Aβ-derived diffusible ligands (ADDLs). The CBD-mediated sequestration of Aβ monomers in soluble ADDLs could reduce neurotoxicity. This study highlights a possible role of CBD in modulating the formation of ADDL aggregates and provides insight into potentially neuroprotective properties of CBD in Alzheimer’s disease.展开更多
Amyloid-β<sub>42</sub> (Aβ<sub>42</sub>) accumulates within senileplaque, a pathological hall mark of Alzheimer’s disease (AD). Our previous reports showed that the monoclonal antibodies 37-...Amyloid-β<sub>42</sub> (Aβ<sub>42</sub>) accumulates within senileplaque, a pathological hall mark of Alzheimer’s disease (AD). Our previous reports showed that the monoclonal antibodies 37-11 and 77-3 react with conformational epitopes on the surface of the soluble aggregates of Aβ<sub>42</sub> and that sandwich ELISA using these two monoclonal antibodies yields high reactivity to detect soluble aggregates of Aβ<sub>42</sub>. Here, the reactivity of the sandwich ELISA was shown to increase in the presence of 50 μM Cu<sup>2+</sup>. However, the addition of Cu<sup>2+</sup> had only a small effect on the reactivity of a direct ELISA using antibody 37-11 or 77-3, suggesting that Cu<sup>2+</sup> has a small effect on the number of epitopes on the surface of the aggregates. Atomic force microscopy images showed that larger aggregates were formed in the presence of Cu<sup>2+</sup>, as shown in the other reports. Cu<sup>2+</sup> may gather the aggregates with distinct epitopes recognized by antibodies 37-11 and 77-3, leading to increased signal intensity of the sandwich ELISA.展开更多
Objective:Alzheimer’s disease( AD) is the most common neurodegenerative disorder which is characterized by amyloid-β( Aβ) aggradation in the brain and impairment of cognitive function. Thioredoxin-1( Trx-1) is a re...Objective:Alzheimer’s disease( AD) is the most common neurodegenerative disorder which is characterized by amyloid-β( Aβ) aggradation in the brain and impairment of cognitive function. Thioredoxin-1( Trx-1) is a redox regulating protein,and plays roles in resisting the oxidative stress and protecting neurons. Our previous study found that Trx-1 improved the cognitive function of Parkinson’s Disease( PD) mice. Geranylgeranylacetone( GGA) is an antiulcer drug and induces the expression of Trx-1 in vivo and in vitro. However,whether Trx-1 improves cognitive functions in mice of APP/PS1 or GGA protects SH-SY5 Y cells from cytotoxicity induced by Aβ is still unknown. The objective of present is to investigate the roles of Trx-1 and GGA in inhibiting neurotoxicity of Aβ. Methods:We used MTT assay to test the cell viability induced by Aβ(25-35) and western blot to detect the expression of Trx-1 in SH-SY5 Y cells. Trx-1 overexpression transgenic mice were hybridized with APP/PS1 transgenic mice to get control,Trx-1,Tx-1/APP/PS1 and APP/PS1 mice. Then we used Morris water maze,high plus maze and object recognition test to detect the cognitive function of different kinds of mice. We also used RT-PCR and western blot to test the mRNA level and expression of Trx-1,APP,PS1 and Aβ. Results:In our present study,we demonstrated that Aβ(25-35) decreased the cell viability and the expression of Trx-1 in SH-SY5 Y cells. The cell viability and the expression of Trx-1 were reversed by GGA. Our results showed that the escape latency in APP/PS1 mice was longer when compared with the Trx-1/APP/PS1 mice in Morris water maze and high plus maze. Whereas navigational experiments in Morris water maze result showed that the total number of crossings and the percentage of time spent in the target quadrant were significantly decreased in APP/PS1 mice when compared to Trx-1/APP/PS1 mice. Object recognition test the discrimination index was significantly decreased in APP/PS1 mice when compared with Trx-1/APP/PS1 mice. The mRNA levels and the expression of APP,PS1 and Aβ were decreased in Trx-1/APP/PS1 mice when compared to APP/PS1 mice. Conclusion:These results suggest that GGA protects SH-SY5 Y cells from cytotoxicity induced by Aβ(25-35) and restored the expression of Trx-1. Trx-1 overexpression improves cognitive function of APP/PS1 mice. Trx-1 may be a potential therapeutic target for the clinical management of AD.展开更多
As key biomarkers,amyloid-β(Aβ)plaques are frequently used to diagnose Alzheimer’s disease(AD).Although fluorescence imaging has proven to be effective in detecting these plaques,the gold standard probe thioflavin ...As key biomarkers,amyloid-β(Aβ)plaques are frequently used to diagnose Alzheimer’s disease(AD).Although fluorescence imaging has proven to be effective in detecting these plaques,the gold standard probe thioflavin T(ThT),used for Aβaggregates,cannot be applied in vivo owing to its invasive nature.Therefore,the development of novel fluorescent probes capable of identifying Aβplaques in situ is necessary.Based on the ThT structure,twoπ-conjugated heterocyclic D-π-A probes were designed bearing the hydroxytricyanopyrrole acceptor and N,N-dimethylaminophenyl donor.These probes exhibited red to near-infrared fluorescence emission(λ_(max)=732 nm),large Stokes shifts(>100 nm),exceptional signal-to-noise ratio,rapid response(<30 s),and high binding affinity(NT-HTCP=33.32 nmol/L;NF-HTCP=53.35 nmol/L)for Aβaggregates.As the best candidate,NT-HTCP was used for in situ imaging of Aβplaques in AD mouse models.Furthermore,in vivo research demonstrated that NT-HTCP could cross the blood-brain barrier and continue imaging the Aβplaques with a good signal-to-noise ratio.Additionally,the outcomes of the docking computations helped guide the development of the Aβprobes.This study expands the family of N,N-dimethylaminophenyl-based Aβ-sensitive fluorophores,with NTHTCP emerging as a highly promising imaging agent.展开更多
Surface chirality plays an important role in determining the biological effect,but the molecular nature beyond stereoselectivity is still unknown.Herein,through surface-enhanced infrared absorption spectroscopy,electr...Surface chirality plays an important role in determining the biological effect,but the molecular nature beyond stereoselectivity is still unknown.Herein,through surface-enhanced infrared absorption spectroscopy,electrochemistry,and theoretical simulations,we found diasteromeric monolayers induced by assembled density on chiral gold nanofilm and identified the positive contribution of water dipole poten-tial at chiral interface and their different interfacial interactions,which result in a difference both in the positive dipoles of interfacial water compensating the negative surface potential of the SAM and in the hindrance effect of interface dehydration,thereby regulating the interaction between amyloid-βpeptide(Aβ)and N-isobutyryl-cysteine(NIBC).Water on L-NIBC interface which shows stronger positive dipole potential weakens the negative surface potential,but its local weak binding to the isopropyl group facilitates hydrophobic interaction between Aβ42 and L-NIBC and resultedfiber aggregate.Conversely,electrostatic interaction between Aβ42 and D-NIBC induces spherical oligomer.Thesefindings provide new insight into molecular nature of chirality-regulated biological effect.展开更多
基金supported by the China Scholarship Council(to YW)the Swedish Research Council,No.2018-02601(to MS)+7 种基金the Alzheimer Foundation,No.AF-980695(to MS)the Stockholm County Council,No.RS2020-0731(to MS)the Foundation of Old Servants(to MS)the Gun and Bertil Stohne Foundation(to MS)the?hlén Foundation,No.233055(to MS)The Swedish Fund for Research without Animal Experiments(to MS)the Swedish Dementia Foundation(to MS)the Brain foundation,No.FO2022-0131(to MS)。
文摘Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte–derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42–induced Alzheimer's disease–like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease–like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42–induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
基金supported by the National Natural Science Foundation of China,No.82201582(to QT)Scientific and Technological Research Program of Chongqing Municipal Education Commission,No.KJQN202200457(to QT)+3 种基金General Project of Changqing Natural Science Foundation,No.cstc2021jcyjmsxmX0442(to ZL)CQMU Program for Youth Innovation in Future Medicine,No.W0044(to ZD and GH)Direct Research Project for PhD of Chongqing,No.CSTB2022BSXM-JCX0051(to ZL)the Project of the Top-Notch Talent Cultivation Program For the Graduate Students of Chongqing Medical University,No.BJRC202310(to CG)。
文摘Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
基金The Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences,Grant/Award Number:CI2023E001TS02,CI2021A04905 and CI2021B015Key Technology Research Foundation of the National Institutes for Food and Drug Control,Grant/Award Number:GJJS-2022-7-1the National Natural Science Foundation of China,Grant/Award Number:82074103。
文摘Background:Jiaohong pills(JHP)consist of Pericarpium Zanthoxyli(PZ)and Radix Rehmanniae,two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive decline and memory impairment.However,the precise mechanisms underlying the beneficial effects remain elusive.Here,research studies were conducted to investigate and validate the therapeutic effects of JHP on Alzheimer's disease.Methods:BV-2 cell inflammation was induced by lipopolysaccharide.AD mice were administered amyloid-β(Aβ).Behavioral experiments were used to evaluate learning and memory ability.The levels of nitric oxide(NO),tumor necrosis factor-alpha(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)were detected using enzymelinked immunosorbent assay(ELISA).The protein expressions of inducible nitric oxide synthase(iNOS)and the phosphorylation level of mitogen-activated protein kinase(MAPK)and nuclear factor kappa-B(NF-κB)were detected using Western blot.Nissl staining was used to detect neuronal degeneration.Results:The results demonstrated that an alcoholic extract of PZ significantly decreased the levels of NO,IL-1β,TNF-α,and iNOS;increased the expression level of IL-10;and significantly decreased the phosphorylation levels of MAPK and NF-κB.These inhibitory effects were further confirmed in the AD mouse model.Meanwhile,JHP improved learning and memory function in AD mice,reduced neuronal damage,and enriched the Nissl bodies in the hippocampus.Moreover,IL-1βand TNF-αin the cortex were significantly downregulated after JHP administration,whereas IL-10showed increased expression.Conclusions:It was found that JHP reduced neuroinflammatory response in AD mice by targeting the MAPK/NF-κB signaling pathway.
文摘Astrocytes' roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/a7-nAChR (αT-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic).
基金supported by Midstream Research Program for UniversitiesHong Kong Special Administrative Region,China,No.MRP-092-17X。
文摘Lycium barbarum(LB)is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions,such as antioxidation,neuroprotection,and immune modulation.One of the main mechanisms of Alzheimer’s disease is that microglia activated by amyloid beta(Aβ)transform from the resting state to an M1 state and release pro-inflammatory cytokines to the surrounding environment.In the present study,immortalized microglial cells were pretreated with L.barbarum extract for 1 hour and then treated with oligomeric Aβfor 23 hours.The results showed that LB extract significantly increased the survival of oligomeric Aβ-induced microglial cells,downregulated the expression of M1 pro-inflammatory markers(inducible nitric oxide synthase,tumor necrosis factorα,interleukin-6,and interleukin-1β),and upregulated the expression of M2 anti-inflammatory markers(arginase-1,chitinase-like protein 3,and interleukin-4).LB extract also inhibited the oligomeric Aβ-induced secretion of tumor necrosis factorα,interleukin-6,and interleukin-1βin microglial cells.The results of in vitro cytological experiments suggest that,in microglial cells,LB extract can inhibit oligomeric Aβ-induced M1 polarization and concomitant inflammatory reactions,and promote M2 polarization.
基金grants from the Ministry of Science and Technology (2003CB515405, 2005CB522406) the National Natural Science Foundation of China (30021003, 30400230, 30625014)+2 种基金 the Chinese Academy of Sciences (KSCX1- SW, KSCX2-SW) the Ministry of Education, Shanghai Municipal Commission for Science and Technology (06ZR14098) China Post Doctoral Science Foundation, and Shanghai Postdoctoral Science Foundation.
文摘Amyloid-β (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease (AD), is generated by β-secretase- and y-secretase-mediated sequential proteolysis of the amyloid precursor protein (APP). The aspartic protease, β -site APP cleavage enzyme (BACE), has been identified as the main β-secretase in brain but the regulation of its activity is largely unclear. Here, we demonstrate that both BACE activity and subsequent Aβ production are enhanced after stimulation of receptor tyrosine kinases (RTKs), such as the receptors for epidermal growth factor (EGF) and nerve growth factor (NGF), in cultured cells as well as in mouse hippocampus. Furthermore, stimulation of RTKs also induces BACE internalization into endosomes and Golgi apparatus. This enhancement of BACE activity and A β production upon RTK activation could be specifically inhibited by Src family kinase inhibitors and by depletion of endogenous c-Src with RNAi, and could be mimicked by over-expressed c-Src. Moreover, blockage of BACE internalization by a dominant negative form of Rab5 also abolished the enhancement of BACE activity and Aβ production, indicating the requirement of BACE internalization for the enhanced activity. Taken together, our study presents evidence that BACE activity and Aβ production are under the regulation of RTKs and this is achieved via RTK-stimulated BACE internalization, and suggests that an aberration of such regulation might contribute to pathogenic Aβ production.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274075 and 91227102)
文摘Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative disorders to sys- temic amyloidoses. In this review, we first introduce the common structural features of amyloid fibrils and the amyloid fibrillation kinetics determined from experimental studies. Then, we discuss the structural models of Alzheimer's amyloid- β (Aβ) fibrils derived from solid-state nuclear magnetic resonance spectroscopy. On the computational side, molecular dynamics simulations can provide atomic details of structures and the underlying oligomerization mechanisms. We finally summarize recent progress in atomistic simulation studies on the oligomerization of β (including full-length Af and its fragments) and the influence of carbon nanoparticles.
文摘Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer’s disease mouse models and patients,and that it plays a vital role in the learning and memory.However,the underlying mechanisms of fibroblast growth factor 13 in Alzheimer’s disease remain unclear.In this study,we established rat models of Alzheimer’s disease by stereotaxic injection of amyloid-β(Aβ_(1-42))-induced into bilateral hippocampus.We also injected lentivirus containing fibroblast growth factor 13 into bilateral hippocampus to overexpress fibroblast growth factor 13.The expression of fibroblast growth factor 13 was downregulated in the brain of the Alzheimer’s disease model rats.After overexpression of fibroblast growth factor 13,learning and memory abilities of the Alzheimer’s disease model rats were remarkably improved.Fibroblast growth factor 13 overexpression increased brain expression levels of oxidative stress-related markers glutathione,superoxide dismutase,phosphatidylinositol-3-kinase,AKT and glycogen synthase kinase 3β,and anti-apoptotic factor BCL.Furthermore,fibroblast growth factor 13 overexpression decreased the number of apoptotic cells,expression of pro-apoptotic factor BAX,cleaved-caspase 3 and amyloid-βexpression,and levels of tau phosphorylation,malondialdehyde,reactive oxygen species and acetylcholinesterase in the brain of Alzheimer’s disease model rats.The changes were reversed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings suggest that overexpression of fibroblast growth factor 13 improved neuronal damage in a rat model of Alzheimer’s disease through activation of the phosphatidylinositol-3-kinase/AKT/glycogen synthase kinase 3βsignaling pathway.
基金supported by grants from the MICINN-ISCⅢ(PI-10/00291 and MPY1412/09)MINECO(SAF2015-71140-R)+1 种基金Comunidad de Madrid(NEUROSTEMCM consortium S2010/BMD-2336)(all to IL)
文摘Although amyloid-β peptide is considered neurotoxic, it may mediate several physiological processes during embryonic development and in the adult brain. The pathological function of amyloid-β peptide has been extensively studied due to its implication in Alzheimer’s disease, but its physiological function remains poorly understood. Amyloid-β peptide can be detected in non-aggregated (monomeric) and aggregated (oligomeric and fibrillary) forms. Each form has different cytotoxic and/or physiological properties, so amyloid-β peptide and its role in Alzheimer’s disease need to be studied further. Neural stem cells and neural precursor cells are good tools for the study on neurodegenerative diseases and can provide future therapeutic applications in diseases such as Alzheimer’s disease. In this review, we provide an outline of the effects of amyloid-β peptide, in monomeric and aggregated forms, on the biology of neural stem cells/neural precursor cells, and discuss the controversies. We also describe the possible molecular targets that could be implicated in these effects, especially GSK3β. A better understanding of amyloid-β peptide (both physiological and pathological), and the signaling pathways involved are essential to advance the field of Alzheimer’s disease.
基金supported by the National Key Research and Development Program of ChinaNos.2021YFC2 701800 and 2021YFC2 701805 (to QY)+2 种基金Open Research Fund of State Key Laboratory of Genetic EngineeringFudan UniversityNo.SKLGE-21 19 (to TXH and QY)
文摘In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation of P-glycoprotein.The amyloid cascade hypothesis describes amyloid-βas the central cause of Alzheimer’s disease neuropathology.Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-βand their potential association in the pathological process of Alzheimer’s disease is critical.Herein,we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age.The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age.Decreased sphingomyelin levels,increased ceramide levels,and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice.Similar results were observed in the Alzheimer’s disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42.In human cerebral microvascular endothelial cells,neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment.Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide.Together,these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway.These studies may serve as new pursuits for the development of anti-Alzheimer’s disease drugs.
文摘Background:Amyloid-β(Aβ)metabolic imbalance is the pivotal pathogenesis leading to Alzheimer’s disease(AD).In sporadic AD,decreased clearance of Aβimportantly contributes to the onset and progression.Astrocytes,the most abundant cell type in the brain,are mainly responsible for maintaining neuronal homeostasis.Most recently,it has been demonstrated that astrocytes play an important role in regulating Aβmetabolism.Icariin(ICA),a flavonoid glucoside extracted from the traditional Chinese herb Epimedium brevicornu,has been shown to produce protective effects against AD by decreasing Aβproduction.However,it remains unclear whether ICA regulates cellular Aβclearance in the astrocytes.Objective:To examine the regulatory effects of ICA on Aβremoval by astrocytes and explore the mechanisms of its actions.Methods:Uptake and subsequent degradation of Aβby astrocytes were evaluated using a combination of enzyme-linked immunosorbent assay(ELISA)and laser confocal microscopy.The effects of oligomer Aβ(oAβ1-42)and/or ICA on the expressions of sirt6 in the primary astrocytes were examined using western blotting and q-PCR assays.The expression of autophagy markers including P62 and LC3-Ⅱ,and phosphorylated-mTOR were measured by western blotting.In order to determine whether sirt6 is involved in the intracellular Aβmetabolism,sirt6 was knocked down using lentiviral vectors containing sirt6-shRNAs and autophagy levels were assessed by western blotting.Results:①In primary astrocytes,ICA not only significantly increased Aβinternalization but also obviously accelerated its degradation in a concentration-dependent manner.②Treatment of astrocytes with Aβ1-42 at 1μmol·L-1 significantly down-regulated the expression of sirt6,which was rescued by ICA.In addition,ICA at 20μmol·L-1 significantly increased the expression of LC3-Ⅱand markedly decreased the expression of P62 and phosphorylated-mTOR in primary astrocytes.③Sirt6 knockdown in primary astrocytes resulted in decreased cellular Aβuptake and degradation.Simultaneously,silencing of sirt6 in astrocytes increased P62 levels and reduced LC3-Ⅱand phosphorylated-mTOR levels.Conclusion:Taken together,our results demonstrate that sirt6 plays an important role in Aβmetabolism in astrocytes via induction of autophagy.ICA is a potential drug for treatment of AD as it upregulates cellular sirt6.
文摘Cannabidiol (CBD), one of the most studied phytocannabinoids, is non-psychotropic and can induce protective effects on the central nervous system against acute and chronic brain injury. Interestingly, CBD inhibits processes relating to amyloid beta (Aβ)-induced neurotoxicity in mouse models of Alzheimer’s disease, though the detailed molecular mechanism underlying the CBD neurotoxicity modulation is not fully understood. In this study, using atomic force microscopy, we find that CBD promotes the aggregation of Aβ peptides, enhancing the formation of Aβ oligomers, also known as Aβ-derived diffusible ligands (ADDLs). The CBD-mediated sequestration of Aβ monomers in soluble ADDLs could reduce neurotoxicity. This study highlights a possible role of CBD in modulating the formation of ADDL aggregates and provides insight into potentially neuroprotective properties of CBD in Alzheimer’s disease.
文摘Amyloid-β<sub>42</sub> (Aβ<sub>42</sub>) accumulates within senileplaque, a pathological hall mark of Alzheimer’s disease (AD). Our previous reports showed that the monoclonal antibodies 37-11 and 77-3 react with conformational epitopes on the surface of the soluble aggregates of Aβ<sub>42</sub> and that sandwich ELISA using these two monoclonal antibodies yields high reactivity to detect soluble aggregates of Aβ<sub>42</sub>. Here, the reactivity of the sandwich ELISA was shown to increase in the presence of 50 μM Cu<sup>2+</sup>. However, the addition of Cu<sup>2+</sup> had only a small effect on the reactivity of a direct ELISA using antibody 37-11 or 77-3, suggesting that Cu<sup>2+</sup> has a small effect on the number of epitopes on the surface of the aggregates. Atomic force microscopy images showed that larger aggregates were formed in the presence of Cu<sup>2+</sup>, as shown in the other reports. Cu<sup>2+</sup> may gather the aggregates with distinct epitopes recognized by antibodies 37-11 and 77-3, leading to increased signal intensity of the sandwich ELISA.
文摘Objective:Alzheimer’s disease( AD) is the most common neurodegenerative disorder which is characterized by amyloid-β( Aβ) aggradation in the brain and impairment of cognitive function. Thioredoxin-1( Trx-1) is a redox regulating protein,and plays roles in resisting the oxidative stress and protecting neurons. Our previous study found that Trx-1 improved the cognitive function of Parkinson’s Disease( PD) mice. Geranylgeranylacetone( GGA) is an antiulcer drug and induces the expression of Trx-1 in vivo and in vitro. However,whether Trx-1 improves cognitive functions in mice of APP/PS1 or GGA protects SH-SY5 Y cells from cytotoxicity induced by Aβ is still unknown. The objective of present is to investigate the roles of Trx-1 and GGA in inhibiting neurotoxicity of Aβ. Methods:We used MTT assay to test the cell viability induced by Aβ(25-35) and western blot to detect the expression of Trx-1 in SH-SY5 Y cells. Trx-1 overexpression transgenic mice were hybridized with APP/PS1 transgenic mice to get control,Trx-1,Tx-1/APP/PS1 and APP/PS1 mice. Then we used Morris water maze,high plus maze and object recognition test to detect the cognitive function of different kinds of mice. We also used RT-PCR and western blot to test the mRNA level and expression of Trx-1,APP,PS1 and Aβ. Results:In our present study,we demonstrated that Aβ(25-35) decreased the cell viability and the expression of Trx-1 in SH-SY5 Y cells. The cell viability and the expression of Trx-1 were reversed by GGA. Our results showed that the escape latency in APP/PS1 mice was longer when compared with the Trx-1/APP/PS1 mice in Morris water maze and high plus maze. Whereas navigational experiments in Morris water maze result showed that the total number of crossings and the percentage of time spent in the target quadrant were significantly decreased in APP/PS1 mice when compared to Trx-1/APP/PS1 mice. Object recognition test the discrimination index was significantly decreased in APP/PS1 mice when compared with Trx-1/APP/PS1 mice. The mRNA levels and the expression of APP,PS1 and Aβ were decreased in Trx-1/APP/PS1 mice when compared to APP/PS1 mice. Conclusion:These results suggest that GGA protects SH-SY5 Y cells from cytotoxicity induced by Aβ(25-35) and restored the expression of Trx-1. Trx-1 overexpression improves cognitive function of APP/PS1 mice. Trx-1 may be a potential therapeutic target for the clinical management of AD.
基金supported by the National Natural Science Foundation of China(Nos.22164006,82060626,and 81360471).
文摘As key biomarkers,amyloid-β(Aβ)plaques are frequently used to diagnose Alzheimer’s disease(AD).Although fluorescence imaging has proven to be effective in detecting these plaques,the gold standard probe thioflavin T(ThT),used for Aβaggregates,cannot be applied in vivo owing to its invasive nature.Therefore,the development of novel fluorescent probes capable of identifying Aβplaques in situ is necessary.Based on the ThT structure,twoπ-conjugated heterocyclic D-π-A probes were designed bearing the hydroxytricyanopyrrole acceptor and N,N-dimethylaminophenyl donor.These probes exhibited red to near-infrared fluorescence emission(λ_(max)=732 nm),large Stokes shifts(>100 nm),exceptional signal-to-noise ratio,rapid response(<30 s),and high binding affinity(NT-HTCP=33.32 nmol/L;NF-HTCP=53.35 nmol/L)for Aβaggregates.As the best candidate,NT-HTCP was used for in situ imaging of Aβplaques in AD mouse models.Furthermore,in vivo research demonstrated that NT-HTCP could cross the blood-brain barrier and continue imaging the Aβplaques with a good signal-to-noise ratio.Additionally,the outcomes of the docking computations helped guide the development of the Aβprobes.This study expands the family of N,N-dimethylaminophenyl-based Aβ-sensitive fluorophores,with NTHTCP emerging as a highly promising imaging agent.
基金National Key R&D Program of China,Grant/Award Number:2022YFE0113000National Science Fund for Distinguished Young Scholars,Grant/Award Number:22025406。
文摘Surface chirality plays an important role in determining the biological effect,but the molecular nature beyond stereoselectivity is still unknown.Herein,through surface-enhanced infrared absorption spectroscopy,electrochemistry,and theoretical simulations,we found diasteromeric monolayers induced by assembled density on chiral gold nanofilm and identified the positive contribution of water dipole poten-tial at chiral interface and their different interfacial interactions,which result in a difference both in the positive dipoles of interfacial water compensating the negative surface potential of the SAM and in the hindrance effect of interface dehydration,thereby regulating the interaction between amyloid-βpeptide(Aβ)and N-isobutyryl-cysteine(NIBC).Water on L-NIBC interface which shows stronger positive dipole potential weakens the negative surface potential,but its local weak binding to the isopropyl group facilitates hydrophobic interaction between Aβ42 and L-NIBC and resultedfiber aggregate.Conversely,electrostatic interaction between Aβ42 and D-NIBC induces spherical oligomer.Thesefindings provide new insight into molecular nature of chirality-regulated biological effect.