Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,result...Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,resulting in approx-imately 6900000 deaths.High-risk groups,identified by the Centers for Disease Control and Prevention,include individuals with conditions like type 2 diabetes mellitus(T2DM),obesity,chronic lung disease,serious heart conditions,and chronic kidney disease.Research indicates that those with T2DM face a hei-ghtened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals.Examining the renin-angiotensin system(RAS),a vital regulator of blood pressure and pulmonary stability,reveals the significance of the angiotensin-converting enzyme(ACE)and ACE2 enzymes.ACE converts angiotensin-I to the vasoconstrictor angiotensin-II,while ACE2 counters this by converting angiotensin-II to angiotensin 1-7,a vasodilator.Reduced ACE2 exp-ression,common in diabetes,intensifies RAS activity,contributing to conditions like inflammation and fibrosis.Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels,concerns arise regarding the potential elevation of ACE2 receptors on cell membranes,potentially facilitating COVID-19 entry.This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome cor-onavirus 2 infection and associated complications in T2DM.Potential treatment strategies,including recombinant human ACE2 therapy,broad-spectrum antiviral drugs,and epigenetic signature detection,are discussed as promising avenues in the battle against this pandemic.展开更多
目的探讨ABI家族成员3结合蛋白(ABI family member 3-binding protein,ABI3BP)在血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导内皮祖细胞功能障碍中的作用及机制。方法为探讨ABI3BP在AngⅡ诱导内皮祖细胞功能障碍中的作用,将细胞分为4组,sh-N...目的探讨ABI家族成员3结合蛋白(ABI family member 3-binding protein,ABI3BP)在血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导内皮祖细胞功能障碍中的作用及机制。方法为探讨ABI3BP在AngⅡ诱导内皮祖细胞功能障碍中的作用,将细胞分为4组,sh-NC组[转染阴性对照短发夹RNA(LV-scramble-shRNA)+磷酸盐缓冲液(phosphate buffered saline,PBS)]、sh-ABI3BP组[转染ABI3BP shRNA(LV-ABI3BP-shRNA)+PBS]、sh-NC+AngⅡ组(LV-scramble-shRNA+AngⅡ)和sh-ABI3BP+AngⅡ组(LV-ABI3BP-shRNA+AngⅡ)。采用Transwell实验检测细胞迁移能力,黏附实验检测细胞黏附能力,Matrigel检测细胞成管能力,原位末端标记法检测细胞凋亡。Western blot检测整合素β1-黏着斑激酶(focal adhesion kinase,FAK)-P53信号通路变化情况。结果与sh-NC组比较,sh-NC+AngⅡ组迁移细胞数量、黏附细胞数量、小管形成数量显著降低,细胞凋亡率、整合素β1、磷酸化FAK(p-FAK)/FAK及P53蛋白表达显著增高,差异有统计学意义(P<0.05)。与sh-NC+AngⅡ组比较,sh-ABI3BP+AngⅡ组迁移细胞数量[(88.67±8.33)个vs(62.33±7.37)个]、黏附细胞数量[(104.33±6.03)个vs(68.33±10.05)个]、小管形成数量[(36.33±3.21)个vs(19.33±3.06)个]显著增高,细胞凋亡率、整合素β1、p-FAK/FAK及P53蛋白表达水平显著降低,差异有统计学意义(P<0.05)。结论AngⅡ可上调ABI3BP表达,敲低ABI3BP基因表达可改善AngⅡ诱导的内皮祖细胞功能障碍,其机制可能与抑制整合素β1-FAK-P53信号通路有关。展开更多
Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including func...Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.展开更多
文摘Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,resulting in approx-imately 6900000 deaths.High-risk groups,identified by the Centers for Disease Control and Prevention,include individuals with conditions like type 2 diabetes mellitus(T2DM),obesity,chronic lung disease,serious heart conditions,and chronic kidney disease.Research indicates that those with T2DM face a hei-ghtened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals.Examining the renin-angiotensin system(RAS),a vital regulator of blood pressure and pulmonary stability,reveals the significance of the angiotensin-converting enzyme(ACE)and ACE2 enzymes.ACE converts angiotensin-I to the vasoconstrictor angiotensin-II,while ACE2 counters this by converting angiotensin-II to angiotensin 1-7,a vasodilator.Reduced ACE2 exp-ression,common in diabetes,intensifies RAS activity,contributing to conditions like inflammation and fibrosis.Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels,concerns arise regarding the potential elevation of ACE2 receptors on cell membranes,potentially facilitating COVID-19 entry.This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome cor-onavirus 2 infection and associated complications in T2DM.Potential treatment strategies,including recombinant human ACE2 therapy,broad-spectrum antiviral drugs,and epigenetic signature detection,are discussed as promising avenues in the battle against this pandemic.
文摘Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.
基金Supported by the Natural Science Foundation of Anhui Province(No.070413124)the Fresh Start Foundation for Doctorate Holder of Wannan Medical College(No.BK00010804-201203)