Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
At a time when there is a growing public interest in animal welfare,it is critical to have objective means to assess the way that an animal experiences a situation.Objectivity is critical to ensure appropriate animal ...At a time when there is a growing public interest in animal welfare,it is critical to have objective means to assess the way that an animal experiences a situation.Objectivity is critical to ensure appropriate animal welfare outcomes.Existing behavioural,physiological,and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes.But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal,from negative to positive.In this review,we draw from the knowledge of human biomedical science to propose a list of candidate biological markers(biomarkers)that should reflect the experiential state of non-human animals.The proposed biomarkers can be classified on their main function as endocrine,oxidative stress,non-coding molecular,and thermobiological markers.We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.展开更多
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole...The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.展开更多
Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly inve...Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.展开更多
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie...Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.展开更多
Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poo...Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.展开更多
Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity...Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.展开更多
Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and e...Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.展开更多
Hepatitis E virus(HEV)is one of the leading causes of acute viral hepatitis worldwide.Although most of HEV infections are asymptomatic,some patients will develop the symptoms,especially pregnant women,the elderly,and ...Hepatitis E virus(HEV)is one of the leading causes of acute viral hepatitis worldwide.Although most of HEV infections are asymptomatic,some patients will develop the symptoms,especially pregnant women,the elderly,and patients with preexisting liver diseases,who often experience anorexia,nausea,vom-iting,malaise,abdominal pain,and jaundice.HEV infection may become chronic in immunosuppressed individuals.In addition,HEV infection can also cause several extrahepatic manifestations.HEV exists in a wide range of hosts in nature and can be transmitted across species.Hence,animals susceptible to HEV can be used as models.The establishment of animal models is of great significance for studying HEV transmission,clinical symptoms,extrahepatic manifestations,and therapeutic strategies,which will help us understand the pathogenesis,prevention,and treatment of hepatitis E.This review summarized the animal models of HEV,including pigs,monkeys,rabbits,mice,rats,and other animals.For each animal species,we provided a concise summary of the HEV genotypes that they can be infected with,the cross-species transmission pathways,as well as their role in studying extrahepatic manifestations,prevention,and treatment of HEV infection.The advantages and disadvantages of these animal models were also emphasized.This review offers new perspectives to enhance the current understanding of the research landscape surrounding HEV animal models.展开更多
Eosinophilic oesophagitis(EoE)is an allergen/immune-mediated chronic esophageal disease characterized by esophageal mucosal eosinophilic infiltration and esophageal dysfunction.Although the disease was originally attr...Eosinophilic oesophagitis(EoE)is an allergen/immune-mediated chronic esophageal disease characterized by esophageal mucosal eosinophilic infiltration and esophageal dysfunction.Although the disease was originally attributed to a delayed allergic reaction to allergens and a Th2-type immune response,the exact pathogenesis is complex,and the efficacy of existing treatments is unsatisfactory.Therefore,the study of the pathophysiological process of EOE has received increasing attention.Animal models have been used extensively to study the molecular mechanism of EOE pathogenesis and also provide a preclinical platform for human clinical intervention studies of novel therapeutic agents.To maximize the use of existing animal models of EOE,it is important to understand the advantages or limitations of each modeling approach.This paper systematically describes the selection of experimental animals,types of allergens,and methods of sensitization and excitation during the preparation of animal models of EoE.It also discusses the utility and shortcomings of each model with the aim of providing the latest perspectives on EoE models and leading to better choices of animal models.展开更多
Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse.Although progress has been made in preclinical research,there is stil...Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse.Although progress has been made in preclinical research,there is still a long way to go in translating research findings into clinical practice.One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients.Therefore,it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models.The main models of cancer cachexia used in current research are allogeneic and xenograft models,genetically engineered mouse models,chemo-therapy drug-induced models,Chinese medicine spleen deficiency models,zebrafish and Drosophila models,and cellular models.This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models,to provide tools and support for translational medicine research.展开更多
Human pluripotent stem cell(hPSC)models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms.In particular,hPSC-based human–animal brain chimer...Human pluripotent stem cell(hPSC)models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms.In particular,hPSC-based human–animal brain chimeras enable the study of human cell pathophysiology in vivo.In chimeric brains,human neural and immune cells can maintain human-specific features,undergo maturation,and functionally integrate into host brains,allowing scientists to study how human cells impact neural circuits and animal behaviors.The emerging human–animal brain chimeras hold promise for modeling human brain cells and their interactions in health and disease,elucidating the disease mechanism from molecular and cellular to circuit and behavioral levels,and testing the efficacy of cell therapy interventions.Here,we discuss recent advances in the generation and applications of using human–animal chimeric brain models for the study of neurological disorders,including disease modeling and cell therapy.展开更多
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,...In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.展开更多
Coronaviruses are widespread in nature and can infect mammals and poultry,making them a public health concern.Globally,prevention and control of emerging and re-emerging animal coronaviruses is a great challenge.The m...Coronaviruses are widespread in nature and can infect mammals and poultry,making them a public health concern.Globally,prevention and control of emerging and re-emerging animal coronaviruses is a great challenge.The mecha-nisms of virus-mediated immune responses have important implications for research on virus prevention and control.The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lympho-cytes,playing an important role in antiviral immune responses.Thus,it can shed light on the development of diagnos-tic methods and novel vaccines.Here,we have reviewed advances in animal coronavirus antigenic epitope research,aiming to provide a reference for the prevention and control of animal and human coronaviruses.展开更多
Human immunodeficiency virus(HIV)infection is strongly associated with a height-ened incidence of lymphomas.To mirror the natural course of human HIV infection,animal models have been developed.These models serve as v...Human immunodeficiency virus(HIV)infection is strongly associated with a height-ened incidence of lymphomas.To mirror the natural course of human HIV infection,animal models have been developed.These models serve as valuable tools to inves-tigate disease pathobiology,assess antiretroviral and immunomodulatory drugs,ex-plore viral reservoirs,and develop eradication strategies.However,there are currently no validated in vivo models of HIV-associated lymphoma(HAL),hampering progress in this crucial domain,and scant attention has been given to developing animal models dedicated to studying HAL,despite their pivotal role in advancing knowledge.This re-view provides a comprehensive overview of the existing animal models of HAL,which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.展开更多
BACKGROUND Various animal models have been used to explore the pathogenesis of choledochal cysts(CCs),but with little convincing results.Current surgical techniques can achieve satisfactory outcomes for treatment of C...BACKGROUND Various animal models have been used to explore the pathogenesis of choledochal cysts(CCs),but with little convincing results.Current surgical techniques can achieve satisfactory outcomes for treatment of CCs.Consequently,recent studies have focused more on clinical issues rather than basic research.Therefore,we need appropriate animal models to further basic research.AIM To establish an appropriate animal model that may contribute to the investigation of the pathogenesis of CCs.METHODS Eighty-four specific pathogen-free female Sprague-Dawley rats were randomly allocated to a surgical group,sham surgical group,or control group.A rat model of CC was established by partial ligation of the bile duct.The reliability of the model was confirmed by measurements of serum biochemical indices,morpho-logy of common bile ducts of the rats as well as molecular biology experiments in rat and human tissues.RESULTS Dilation classified as mild(diameter,≥1 mm to<3 mm),moderate(≥3 mm to<10 mm),and severe(≥10 mm)was observed in 17,17,and 2 rats in the surgical group,respectively,while no dilation was observed in the control and sham surgical groups.Serum levels of alanine aminotransferase,aspartate aminotrans-ferase,total bilirubin,direct bilirubin,and total bile acids were significantly elevated in the surgical group as compared to the control group 7 d after surgery,while direct bilirubin,total bilirubin,and gamma-glutamyltransferase were further increased 14 d after surgery.Most of the biochemical indices gradually decreased to normal ranges 28 d after surgery.The protein expression trend of signal transducer and activator of transcription 3 in rat model was consistent with the human CC tissues.CONCLUSION The model of partial ligation of the bile duct of juvenile rats could morphologically simulate the cystic or fusiform CC,which may contribute to investigating the pathogenesis of CC.展开更多
Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery,or as an expression of fibrodysplasia ossificans progressiva.This condition can be referred ...Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery,or as an expression of fibrodysplasia ossificans progressiva.This condition can be referred to by various names in clinical practice and literature,including tendon ossification,tendon mineralization,heterotopic ossification,and calcific tendonitis.The exact pathogenesis of tendon calcification remains uncertain,but current mainstream research suggests that calcification is mostly cell mediated.To further elucidate the pathogenesis of tendon calcification and to better simulate the overall process,selecting appropriate experimental animal models is important.Numerous animal models have been utilized in various clinical studies,each with its own set of advantages and limitations.In this review,we have discussed the advancements made in research on animal models of tendon calcification,with a focus on the selection of experimental animals,the sites of injury in these models,and the methods employed for modeling.展开更多
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
基金This research was supported by Meat and Livestock Australia grant P.PSH.1232,the Australasian Pork Research Institute Ltd grant 5A-113,The University of Queensland and The University of Western Australia.
文摘At a time when there is a growing public interest in animal welfare,it is critical to have objective means to assess the way that an animal experiences a situation.Objectivity is critical to ensure appropriate animal welfare outcomes.Existing behavioural,physiological,and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes.But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal,from negative to positive.In this review,we draw from the knowledge of human biomedical science to propose a list of candidate biological markers(biomarkers)that should reflect the experiential state of non-human animals.The proposed biomarkers can be classified on their main function as endocrine,oxidative stress,non-coding molecular,and thermobiological markers.We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金National Key Research and Development Program of China(2022YFC2303700,2021YFC2301300)Yunnan Key Research and Development Program(202303AC100026)+2 种基金National Natural Science Foundation of China(82302002,82341069)Yunnan Fundamental Research Project(202201AS070047)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0490000)。
文摘The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.
基金supported by the National Key Research and Development Program of China (2021YFA0805300,2021YFA0805200)National Natural Science Foundation of China (32170981,82371874,82394422,82171244,82071421,82271902)+1 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001)。
文摘Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China (31970574)。
文摘Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.
基金supported by the Cutting Edge Development Fund of Advanced Medical Research Institute(GYY2023QY01)the China Postdoctoral Science Foundation(certificate number:2023M732093)。
文摘Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.
基金supported by the National Natural Science Foundation of China(31970116,72274192)。
文摘Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.
基金supported by the National Natural Science Foundation of China (31930106 and U22A20514, U23A20232)the National Key R&D Program of China (2022YFD1300404)+2 种基金the 2115 Talent Development Program of China Agricultural University (1041-00109019)the Pinduoduo-China Agricultural University Research Fund (PC2023A01001)the Special Fund for Henan Agriculture Research System (HARS-2213-Z1)。
文摘Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
基金This study was supported by grants from the National Natural Science Foundation of China(82272396)the Fundamental Research Funds for the Central Universities(226-2022-00061).
文摘Hepatitis E virus(HEV)is one of the leading causes of acute viral hepatitis worldwide.Although most of HEV infections are asymptomatic,some patients will develop the symptoms,especially pregnant women,the elderly,and patients with preexisting liver diseases,who often experience anorexia,nausea,vom-iting,malaise,abdominal pain,and jaundice.HEV infection may become chronic in immunosuppressed individuals.In addition,HEV infection can also cause several extrahepatic manifestations.HEV exists in a wide range of hosts in nature and can be transmitted across species.Hence,animals susceptible to HEV can be used as models.The establishment of animal models is of great significance for studying HEV transmission,clinical symptoms,extrahepatic manifestations,and therapeutic strategies,which will help us understand the pathogenesis,prevention,and treatment of hepatitis E.This review summarized the animal models of HEV,including pigs,monkeys,rabbits,mice,rats,and other animals.For each animal species,we provided a concise summary of the HEV genotypes that they can be infected with,the cross-species transmission pathways,as well as their role in studying extrahepatic manifestations,prevention,and treatment of HEV infection.The advantages and disadvantages of these animal models were also emphasized.This review offers new perspectives to enhance the current understanding of the research landscape surrounding HEV animal models.
基金supported by Natural Science Foundation of Hubei Province(2021CFB401)。
文摘Eosinophilic oesophagitis(EoE)is an allergen/immune-mediated chronic esophageal disease characterized by esophageal mucosal eosinophilic infiltration and esophageal dysfunction.Although the disease was originally attributed to a delayed allergic reaction to allergens and a Th2-type immune response,the exact pathogenesis is complex,and the efficacy of existing treatments is unsatisfactory.Therefore,the study of the pathophysiological process of EOE has received increasing attention.Animal models have been used extensively to study the molecular mechanism of EOE pathogenesis and also provide a preclinical platform for human clinical intervention studies of novel therapeutic agents.To maximize the use of existing animal models of EOE,it is important to understand the advantages or limitations of each modeling approach.This paper systematically describes the selection of experimental animals,types of allergens,and methods of sensitization and excitation during the preparation of animal models of EoE.It also discusses the utility and shortcomings of each model with the aim of providing the latest perspectives on EoE models and leading to better choices of animal models.
基金supported by grants from the National Natural Science Foundation of China (No.82070912,82370899,and 81773326)National Key Research and Development Program of China (2022YFF0710801).
文摘Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse.Although progress has been made in preclinical research,there is still a long way to go in translating research findings into clinical practice.One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients.Therefore,it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models.The main models of cancer cachexia used in current research are allogeneic and xenograft models,genetically engineered mouse models,chemo-therapy drug-induced models,Chinese medicine spleen deficiency models,zebrafish and Drosophila models,and cellular models.This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models,to provide tools and support for translational medicine research.
文摘Human pluripotent stem cell(hPSC)models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms.In particular,hPSC-based human–animal brain chimeras enable the study of human cell pathophysiology in vivo.In chimeric brains,human neural and immune cells can maintain human-specific features,undergo maturation,and functionally integrate into host brains,allowing scientists to study how human cells impact neural circuits and animal behaviors.The emerging human–animal brain chimeras hold promise for modeling human brain cells and their interactions in health and disease,elucidating the disease mechanism from molecular and cellular to circuit and behavioral levels,and testing the efficacy of cell therapy interventions.Here,we discuss recent advances in the generation and applications of using human–animal chimeric brain models for the study of neurological disorders,including disease modeling and cell therapy.
基金the Fundamental Research Funds for the Central Universities,National Natural Science Foundation of China(No.82302345).
文摘In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.
基金supported by the Natural Science Foundation of Zhejiang Province(Q23C180006)the Zhejiang A&F University Talent Initiative Project(118-203402005901).
文摘Coronaviruses are widespread in nature and can infect mammals and poultry,making them a public health concern.Globally,prevention and control of emerging and re-emerging animal coronaviruses is a great challenge.The mecha-nisms of virus-mediated immune responses have important implications for research on virus prevention and control.The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lympho-cytes,playing an important role in antiviral immune responses.Thus,it can shed light on the development of diagnos-tic methods and novel vaccines.Here,we have reviewed advances in animal coronavirus antigenic epitope research,aiming to provide a reference for the prevention and control of animal and human coronaviruses.
基金Chongqing Professional Talents Plan,Grant/Award Number:cstc2022ycjh-bgzxm0048Fundamental Research Funds for the Central Universities,Grant/Award Number:2022CDJYGRH-001Natural Science Foundation of Chongqing,China,Grant/Award Number:CSTB2022NSCQ-MSX1150。
文摘Human immunodeficiency virus(HIV)infection is strongly associated with a height-ened incidence of lymphomas.To mirror the natural course of human HIV infection,animal models have been developed.These models serve as valuable tools to inves-tigate disease pathobiology,assess antiretroviral and immunomodulatory drugs,ex-plore viral reservoirs,and develop eradication strategies.However,there are currently no validated in vivo models of HIV-associated lymphoma(HAL),hampering progress in this crucial domain,and scant attention has been given to developing animal models dedicated to studying HAL,despite their pivotal role in advancing knowledge.This re-view provides a comprehensive overview of the existing animal models of HAL,which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.
基金the Key R&D Program of Zhejiang,No.2023C03029Health Science and Technology Plan of Zhejiang Province,No.2022RC201Zhejiang Provincial Natural Science Foundation Project,No.LY20H030007.
文摘BACKGROUND Various animal models have been used to explore the pathogenesis of choledochal cysts(CCs),but with little convincing results.Current surgical techniques can achieve satisfactory outcomes for treatment of CCs.Consequently,recent studies have focused more on clinical issues rather than basic research.Therefore,we need appropriate animal models to further basic research.AIM To establish an appropriate animal model that may contribute to the investigation of the pathogenesis of CCs.METHODS Eighty-four specific pathogen-free female Sprague-Dawley rats were randomly allocated to a surgical group,sham surgical group,or control group.A rat model of CC was established by partial ligation of the bile duct.The reliability of the model was confirmed by measurements of serum biochemical indices,morpho-logy of common bile ducts of the rats as well as molecular biology experiments in rat and human tissues.RESULTS Dilation classified as mild(diameter,≥1 mm to<3 mm),moderate(≥3 mm to<10 mm),and severe(≥10 mm)was observed in 17,17,and 2 rats in the surgical group,respectively,while no dilation was observed in the control and sham surgical groups.Serum levels of alanine aminotransferase,aspartate aminotrans-ferase,total bilirubin,direct bilirubin,and total bile acids were significantly elevated in the surgical group as compared to the control group 7 d after surgery,while direct bilirubin,total bilirubin,and gamma-glutamyltransferase were further increased 14 d after surgery.Most of the biochemical indices gradually decreased to normal ranges 28 d after surgery.The protein expression trend of signal transducer and activator of transcription 3 in rat model was consistent with the human CC tissues.CONCLUSION The model of partial ligation of the bile duct of juvenile rats could morphologically simulate the cystic or fusiform CC,which may contribute to investigating the pathogenesis of CC.
基金the Science and Technology Innovation Cooperation Special Programme of Sichuan Province,Grant/Award Number:2022YFS0609-C1Industry-University-Research Cooperation Foundation,Grant/Award Number:2021CXYZ01+2 种基金Luzhou Science and Technology Plan Project,Grant/Award Number:2021-SYF-25China Postdoctoral Science Foundation,Grant/Award Number:2023M732927Scientific Research Project of Southwest Medical University,Grant/Award Number:2021ZKMS051 and 2022QN018。
文摘Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery,or as an expression of fibrodysplasia ossificans progressiva.This condition can be referred to by various names in clinical practice and literature,including tendon ossification,tendon mineralization,heterotopic ossification,and calcific tendonitis.The exact pathogenesis of tendon calcification remains uncertain,but current mainstream research suggests that calcification is mostly cell mediated.To further elucidate the pathogenesis of tendon calcification and to better simulate the overall process,selecting appropriate experimental animal models is important.Numerous animal models have been utilized in various clinical studies,each with its own set of advantages and limitations.In this review,we have discussed the advancements made in research on animal models of tendon calcification,with a focus on the selection of experimental animals,the sites of injury in these models,and the methods employed for modeling.