The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor t...Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor transport method.We measured the magnetization,longitudinal resistivityρxx(T,H),Hall resistivityρxy(T,H),as well as performed calculations of the electronic band structure.It was found that V_(1/3)TaS_(2) is an A-type antiferromagnet with the Neel temperature T_(N)=6.20 K,and exhibits a negative magnetoresistance(MR)near T_(N).Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.展开更多
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont...A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.展开更多
Recently,Chern insulators in an antiferromagnetic(AFM)phase have been suggested theoretically and predicted in a few materials.However,the experimental observation of two-dimensional(2D)AFM quantum anomalous Hall effe...Recently,Chern insulators in an antiferromagnetic(AFM)phase have been suggested theoretically and predicted in a few materials.However,the experimental observation of two-dimensional(2D)AFM quantum anomalous Hall effect is still a challenge to date.In this work,we propose that an AFM Chern insulator can be realized in a 2D monolayer of NiOsCl_(6)modulated by a compressive strain.Strain modulation is accessible experimentally and used widely in predicting and tuning topological nontrivial phases.With first-principles calculations,we have investigated the structural,magnetic,and electronic properties of NiOsCl_(6).Its stability has been confirmed through molecular dynamical simulations,elasticity constant,and phonon spectrum.It has a collinear AFM order,with opposite magnetic moments of 1.3μBon each Ni/Os atom,respectively,and the Neel temperature is estimated to be 93 K.In the absence of strain,it functions as an AFM insulator with a direct gap with spin-orbital coupling included.Compressive strain will induce a transition from a normal insulator to a Chern insulator characterized by a Chern number C=1,with a band gap of about 30 meV.This transition is accompanied by a structural distortion.Remarkably,the Chern insulator phase persists within the 3%-10%compressive strain range,offering an alternative platform for the utilization of AFM materials in spintronic devices.展开更多
Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared...Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.展开更多
By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons ...By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons of two different quantum frequency bands: i.e., magnetic optical solitons and acoustic solitons. At the boundary of the Brillouin zone, these solitons becornc quantum intrinsic localized modes: their quantum eigenfrequencics are below the bottom of the harmonic optical frequency band and above the top of the harmonic acoustic frequency band.展开更多
Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and or...Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect.展开更多
In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a me...In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).展开更多
It has recently been demonstrated that various topological states, including Dirac, Weyl, nodal-line, and triplepoint semimetal phases, can emerge in antiferromagnetic(AFM) half-Heusler compounds. However, how to dete...It has recently been demonstrated that various topological states, including Dirac, Weyl, nodal-line, and triplepoint semimetal phases, can emerge in antiferromagnetic(AFM) half-Heusler compounds. However, how to determine the AFM structure and to distinguish different topological phases from transport behaviors remains unknown. We show that, due to the presence of combined time-reversal and fractional translation symmetry, the recently proposed second-order nonlinear Hall effect can be used to characterize different topological phases with various AFM configurations. Guided by the symmetry analysis, we obtain expressions of the Berry curvature dipole for different AFM configurations. Based on the effective model, we explicitly calculate the Berry curvature dipole, which is found to be vanishingly small for the triple-point semimetal phase, and large in the Weyl semimetal phase. Our results not only put forward an effective method for the identification of magnetic orders and topological phases in AFM half-Heusler materials, but also suggest these materials as a versatile platform for engineering the nonlinear Hall effect.展开更多
We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to...We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to be excited in a bare GdFeO_(3) without spin reorientation phase but efficiently in Fe/GdFeO_(3).Both quasi-ferromagnetic and impurity modes,as well as a phonon mode,are observed.We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3.Moreover,the excitation efficiency of dynamics can be modified significantly via the pump laser influence.Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets.It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.展开更多
We exploit a scheme to obtain a long-lived entanglement using a driven central spin interacting with an antiferromagnetic spin bath. Our numerical results show the effects of different parameters on the population inv...We exploit a scheme to obtain a long-lived entanglement using a driven central spin interacting with an antiferromagnetic spin bath. Our numerical results show the effects of different parameters on the population inversion and the entanglement dynamics in terms of the linear entropy. It is shown that the long-lived entanglement is an intriguing result corresponding to the collapse region of the atomic inversion. As illustration, we examine the long-time interaction of the entanglement under the resonance and off-resonance regimes.展开更多
We report the detailed physical properties of quaternary compound Ba2BiFeS5 with the key structural ingredient of isolated FeS4 tetrahedra.Magnetization and heat capacity measurements clearly indicate that Ba2BiFeS5 h...We report the detailed physical properties of quaternary compound Ba2BiFeS5 with the key structural ingredient of isolated FeS4 tetrahedra.Magnetization and heat capacity measurements clearly indicate that Ba2BiFeS5 has a paramagnetic to antiferromagnetic transition at about 30 K.The calculated magnetic entropy above ordering temperature is much smaller than theoretical value for high-spin Fe^3+ion with S=5/2,implying the possible short-range antiferromagnetic fluctuation in Ba2BiFeS5.展开更多
The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Ou...The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Our analytical derivations show that all the spins in the GS phase must lie in planes that are parallel to each other. When applying the derived formulations to concrete lattices such as the square and simple cubic lattices, we find that in the large J_2 region, a large continuous GS degeneracy concluded by a qualitative analysis is lifted, and collinear striped ordering is selected as the GS phase.展开更多
Polycrystalline samples of La0.67-xPrxCa0.33MnO3(x=0~0.67) were synthesized by a conventional solid state reaction. X-ray diffraction revealed that the samples were all of single phase with an orthorhombic distorted ...Polycrystalline samples of La0.67-xPrxCa0.33MnO3(x=0~0.67) were synthesized by a conventional solid state reaction. X-ray diffraction revealed that the samples were all of single phase with an orthorhombic distorted perovskite structure. The magnetization depended on temperature measured in FC (field cooling) and ZFC (zero field cooling). It revealed that the compounds mainly underwent a ferromagnetic transition (TC) when the less Pr doped (x<0.4). With increasing doping content (x>0.5), the ferromagnetic transition disappeared and the antiferromagnetic transition (TN) was dominant. Charge ordering (TCO) also emerged when x>0.36. The transition temperatures TN and TCO would change with the Pr doping content. The phase separation could be used to explain these characters occurred in these polycrystalline samples.展开更多
Rare-earth(R)-based materials with large reversible magnetocaloric effect(MCE)are attracting much attention as the promising candidates for low temperature magnetic refrigeration.In the present work,the magnetic prope...Rare-earth(R)-based materials with large reversible magnetocaloric effect(MCE)are attracting much attention as the promising candidates for low temperature magnetic refrigeration.In the present work,the magnetic properties and MCE of DyNiGa compound with TiNiSi-type orthorhombic structure are studied systematically.The DyNiGa undergoes a magnetic transition from antiferromagnetic(AFM)to paramagnetic state with Néel temperature TN=17 K.Meanwhile,it does not show thermal and magnetic hysteresis,revealing the perfect thermal and magnetic reversibility.Moreover,the AFM state can be induced into a ferromagnetic state by a relatively low field,and thus leading to a large reversible MCE,e.g.,a maximum magnetic entropy change(-ΔSM)of 10 J/kg·K is obtained at 18 K under a magnetic field change of 5 T.Consequently,the large MCE without thermal or magnetic hysteresis makes the DyNiGa a competitive candidate for magnetic refrigeration of hydrogen liquefaction.展开更多
The effect of thermomechanical treatment on the magnetic properties of Mn85.5Fe9.0Cu0.5 alloy was studied by use of a materials testing machine, a vibrating sample magnetometer, an X-ray diffractometer, a homogeneousl...The effect of thermomechanical treatment on the magnetic properties of Mn85.5Fe9.0Cu0.5 alloy was studied by use of a materials testing machine, a vibrating sample magnetometer, an X-ray diffractometer, a homogeneously and adjustably magnetic field and strain gauges. The results show that the orientation of fct phase and magnetic domains is affected by the thermomechanical treatment. When the compressive strain of thermomechanical treatment is -1.2%, the magnetic-field-induced strain reaches the highest value in the adapted situation.展开更多
Electrical spin,which is the key element of spintronics,has been regarded as a powerful substitute for the electrical charge in the next generation of information technology,in which spin plays the role of the carrier...Electrical spin,which is the key element of spintronics,has been regarded as a powerful substitute for the electrical charge in the next generation of information technology,in which spin plays the role of the carrier of information and/or energy in a similar way to the electrical charge in electronics.Spin-transport phenomena in different materials are central topics of spintronics.Unlike electrical charge,spin transport does not depend on electron motion,particularly spin can be transported in insulators without accompanying Joule heating.Therefore,insulators are considered to be ideal materials for spin conductors,in which magnetic insulators are the most compelling systems.Recently,we experimentally studied and theoretically discussed spin transport in various antiferromagnetic systems and identified spin susceptibility and the Néel vector as the most important factors for spin transport in antiferromagnetic systems.Herein,we summarize our experimental results,physical nature,and puzzles unknown.Further challenges and potential applications are also discussed.展开更多
Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi...Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observe the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe1.23Te3 serves as a simpler platform that contains similar ingredients to the parent compounds of iron-based superconductors.展开更多
The aims of the work were to study the effect of Ge (0-6wt. %) on the paramagnetic-antiferromagnetic transition and martensitic transformation of Fe-Mn alloy using the susceptibility, micro structure examination, X-ra...The aims of the work were to study the effect of Ge (0-6wt. %) on the paramagnetic-antiferromagnetic transition and martensitic transformation of Fe-Mn alloy using the susceptibility, micro structure examination, X-ray diffraction (XRD) and latticeparameter measurement. Ge lowers the Néel temperature, TN, and enhances the magnetic susceptibility x, changing the Pauli paramagnetism above TN to paramagnetismstate obeying the Curie Weiss law, which is essentially similar to that of γ-Fe-Mnalloys containing Al or Si; Ge depresses γ-ε martensitic transformation, whichattribute to Ge increasing the stacking fault energy; Moreover, Ge increases the lattice parameter of γ phase, and low content Ge increases the lattice parameter of γphase more than that of high Ge content. Comparing Ge(4s24p2) with Si(3s23p2) and Al(3s2 3p1), which have the same outer-shell of electron structures, we found that their effects on the martensitic transformation of Fe-Mn alloy are completely different. The result suggests the outer-shell of electron is not the main factor of governing the Ms temperature of Fe-Mn alloy although it is essential in the alloy's antiferromagnetic transition. The relation among the Ms temperature, stacking fault energy and lattice parameter of austenite, has been discussed in brief.展开更多
This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum flu...This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.展开更多
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403202)the National Natural Science Foundation of China(Grant Nos.NSFC-12074335,11974095,5177115,11974095,and 12188101)the Natural Science Foundation of Shaanxi Province of China(Grant No.2022JM-028).
文摘Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor transport method.We measured the magnetization,longitudinal resistivityρxx(T,H),Hall resistivityρxy(T,H),as well as performed calculations of the electronic band structure.It was found that V_(1/3)TaS_(2) is an A-type antiferromagnet with the Neel temperature T_(N)=6.20 K,and exhibits a negative magnetoresistance(MR)near T_(N).Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0210004)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3510000013)the National Supercomputing Center in Tianjin。
文摘A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104183,52173283,and 62071200)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2021MA040 and ZR2023MA091)+2 种基金the Taishan Scholar Program of Shandong Province,China(Grant No.ts20190939)the Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043)supported by high-performance computing platform at University of Jinan。
文摘Recently,Chern insulators in an antiferromagnetic(AFM)phase have been suggested theoretically and predicted in a few materials.However,the experimental observation of two-dimensional(2D)AFM quantum anomalous Hall effect is still a challenge to date.In this work,we propose that an AFM Chern insulator can be realized in a 2D monolayer of NiOsCl_(6)modulated by a compressive strain.Strain modulation is accessible experimentally and used widely in predicting and tuning topological nontrivial phases.With first-principles calculations,we have investigated the structural,magnetic,and electronic properties of NiOsCl_(6).Its stability has been confirmed through molecular dynamical simulations,elasticity constant,and phonon spectrum.It has a collinear AFM order,with opposite magnetic moments of 1.3μBon each Ni/Os atom,respectively,and the Neel temperature is estimated to be 93 K.In the absence of strain,it functions as an AFM insulator with a direct gap with spin-orbital coupling included.Compressive strain will induce a transition from a normal insulator to a Chern insulator characterized by a Chern number C=1,with a band gap of about 30 meV.This transition is accompanied by a structural distortion.Remarkably,the Chern insulator phase persists within the 3%-10%compressive strain range,offering an alternative platform for the utilization of AFM materials in spintronic devices.
基金Project supported by the open research fund of Songshan Lake Materials Laboratory(Grant No.2021SLABFN11)the National Natural Science Foundation of China(Grant Nos.U2130101 and 92165204)+5 种基金Natural Science Foundation of Guangdong Province(Grant No.2022A1515010035)Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011798)the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)the Open Project of Key Laboratory of Optoelectronic Materials and Technologies(Grant No.OEMT-2023-ZTS-01)the National Key R&D Program of China(Grant Nos.2023YFF0718400 and 2023YFA1406500)(national)college students innovation and entrepreneurship training program,Sun Yat-sen University(Grant No.202310359).
文摘Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.
基金Project supported by the Natural Science Foundation of Hunan Province, China (Grant No 03JJY6008).
文摘By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons of two different quantum frequency bands: i.e., magnetic optical solitons and acoustic solitons. At the boundary of the Brillouin zone, these solitons becornc quantum intrinsic localized modes: their quantum eigenfrequencics are below the bottom of the harmonic optical frequency band and above the top of the harmonic acoustic frequency band.
基金Supported by the Youth Science Foundation of Shanxi Province under Grant No 2013021010-3the National Natural Science Foundation of China under Grant Nos 61434002 and 11404202
文摘Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect.
文摘In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).
基金Supported by the National Natural Science Foundation of China (Grant Nos.11834006,12074181,and 11674165)the Natural Science Foundation of Jiangsu Province (Grant No.BK20200007)+1 种基金the Fok Ying-Tong Education Foundation of China (Grant No.161006)the Fundamental Research Funds for the Central Universities (Grant No.020414380149)。
文摘It has recently been demonstrated that various topological states, including Dirac, Weyl, nodal-line, and triplepoint semimetal phases, can emerge in antiferromagnetic(AFM) half-Heusler compounds. However, how to determine the AFM structure and to distinguish different topological phases from transport behaviors remains unknown. We show that, due to the presence of combined time-reversal and fractional translation symmetry, the recently proposed second-order nonlinear Hall effect can be used to characterize different topological phases with various AFM configurations. Guided by the symmetry analysis, we obtain expressions of the Berry curvature dipole for different AFM configurations. Based on the effective model, we explicitly calculate the Berry curvature dipole, which is found to be vanishingly small for the triple-point semimetal phase, and large in the Weyl semimetal phase. Our results not only put forward an effective method for the identification of magnetic orders and topological phases in AFM half-Heusler materials, but also suggest these materials as a versatile platform for engineering the nonlinear Hall effect.
基金Project supported by the National Key Research Program of China(Grant Nos.2018YFF01010303,2017YFB0702702,and 2016YFA0300701)the National Natural Sciences Foundation of China(Grant Nos.52031015,1187411,51427801,and 51871235)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant Nos.QYZDJ-SSW-JSC023,KJZD-SW-M01,and ZDYZ2012-2).
文摘We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to be excited in a bare GdFeO_(3) without spin reorientation phase but efficiently in Fe/GdFeO_(3).Both quasi-ferromagnetic and impurity modes,as well as a phonon mode,are observed.We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3.Moreover,the excitation efficiency of dynamics can be modified significantly via the pump laser influence.Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets.It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.
文摘We exploit a scheme to obtain a long-lived entanglement using a driven central spin interacting with an antiferromagnetic spin bath. Our numerical results show the effects of different parameters on the population inversion and the entanglement dynamics in terms of the linear entropy. It is shown that the long-lived entanglement is an intriguing result corresponding to the collapse region of the atomic inversion. As illustration, we examine the long-time interaction of the entanglement under the resonance and off-resonance regimes.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0300504)the National Natural Science Foundation of China(Grant Nos.11574394,11774423,and 11822412)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(RUC)(Grant Nos.15XNLQ07,18XNLG14,and 19XNLG17)
文摘We report the detailed physical properties of quaternary compound Ba2BiFeS5 with the key structural ingredient of isolated FeS4 tetrahedra.Magnetization and heat capacity measurements clearly indicate that Ba2BiFeS5 has a paramagnetic to antiferromagnetic transition at about 30 K.The calculated magnetic entropy above ordering temperature is much smaller than theoretical value for high-spin Fe^3+ion with S=5/2,implying the possible short-range antiferromagnetic fluctuation in Ba2BiFeS5.
基金Supported by the National Natural Science Foundation of China under Grant No 11774002
文摘The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Our analytical derivations show that all the spins in the GS phase must lie in planes that are parallel to each other. When applying the derived formulations to concrete lattices such as the square and simple cubic lattices, we find that in the large J_2 region, a large continuous GS degeneracy concluded by a qualitative analysis is lifted, and collinear striped ordering is selected as the GS phase.
基金the Nature Science Foundation of Hebei Province (E2006000058)Doctor Foundation of Hebei Univ.Tech.
文摘Polycrystalline samples of La0.67-xPrxCa0.33MnO3(x=0~0.67) were synthesized by a conventional solid state reaction. X-ray diffraction revealed that the samples were all of single phase with an orthorhombic distorted perovskite structure. The magnetization depended on temperature measured in FC (field cooling) and ZFC (zero field cooling). It revealed that the compounds mainly underwent a ferromagnetic transition (TC) when the less Pr doped (x<0.4). With increasing doping content (x>0.5), the ferromagnetic transition disappeared and the antiferromagnetic transition (TN) was dominant. Charge ordering (TCO) also emerged when x>0.36. The transition temperatures TN and TCO would change with the Pr doping content. The phase separation could be used to explain these characters occurred in these polycrystalline samples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51701130 and 51925605)the Natural Science Foundation of Tianjin,China(Grant Nos.18ZXCLGX00040 and 15JCZDJC38700)the National Key Research and Development Program of China(Grant Nos.2019YFA0704900,2019YFA0705000,2019YFA0705100,2019YFA0705200,and 2019YFA0705300).
文摘Rare-earth(R)-based materials with large reversible magnetocaloric effect(MCE)are attracting much attention as the promising candidates for low temperature magnetic refrigeration.In the present work,the magnetic properties and MCE of DyNiGa compound with TiNiSi-type orthorhombic structure are studied systematically.The DyNiGa undergoes a magnetic transition from antiferromagnetic(AFM)to paramagnetic state with Néel temperature TN=17 K.Meanwhile,it does not show thermal and magnetic hysteresis,revealing the perfect thermal and magnetic reversibility.Moreover,the AFM state can be induced into a ferromagnetic state by a relatively low field,and thus leading to a large reversible MCE,e.g.,a maximum magnetic entropy change(-ΔSM)of 10 J/kg·K is obtained at 18 K under a magnetic field change of 5 T.Consequently,the large MCE without thermal or magnetic hysteresis makes the DyNiGa a competitive candidate for magnetic refrigeration of hydrogen liquefaction.
基金Project(20080441084) supported by China Postdoctoral Science FoundationProject(2007GCZ1714) supported by the Natural Science Foundation of Jiangxi Province, ChinaProject (GJJ08004) supported by Education Bureau of Jiangxi Province, China
文摘The effect of thermomechanical treatment on the magnetic properties of Mn85.5Fe9.0Cu0.5 alloy was studied by use of a materials testing machine, a vibrating sample magnetometer, an X-ray diffractometer, a homogeneously and adjustably magnetic field and strain gauges. The results show that the orientation of fct phase and magnetic domains is affected by the thermomechanical treatment. When the compressive strain of thermomechanical treatment is -1.2%, the magnetic-field-induced strain reaches the highest value in the adapted situation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874098)LiaoNing Revitalization Talents Program(Grant No.XLYC1807156)the Fundamental Research Funds for the Central Universities(Grant No.DUT17RC(3)073)
文摘Electrical spin,which is the key element of spintronics,has been regarded as a powerful substitute for the electrical charge in the next generation of information technology,in which spin plays the role of the carrier of information and/or energy in a similar way to the electrical charge in electronics.Spin-transport phenomena in different materials are central topics of spintronics.Unlike electrical charge,spin transport does not depend on electron motion,particularly spin can be transported in insulators without accompanying Joule heating.Therefore,insulators are considered to be ideal materials for spin conductors,in which magnetic insulators are the most compelling systems.Recently,we experimentally studied and theoretically discussed spin transport in various antiferromagnetic systems and identified spin susceptibility and the Néel vector as the most important factors for spin transport in antiferromagnetic systems.Herein,we summarize our experimental results,physical nature,and puzzles unknown.Further challenges and potential applications are also discussed.
基金Supported by the National Basic Research Program of China under Grant Nos 2012CB921400,2011CB921802 and 2011CBA00112
文摘Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observe the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe1.23Te3 serves as a simpler platform that contains similar ingredients to the parent compounds of iron-based superconductors.
基金The project was supported by the National Natural Science Foundation of China (Grant No.59601007).
文摘The aims of the work were to study the effect of Ge (0-6wt. %) on the paramagnetic-antiferromagnetic transition and martensitic transformation of Fe-Mn alloy using the susceptibility, micro structure examination, X-ray diffraction (XRD) and latticeparameter measurement. Ge lowers the Néel temperature, TN, and enhances the magnetic susceptibility x, changing the Pauli paramagnetism above TN to paramagnetismstate obeying the Curie Weiss law, which is essentially similar to that of γ-Fe-Mnalloys containing Al or Si; Ge depresses γ-ε martensitic transformation, whichattribute to Ge increasing the stacking fault energy; Moreover, Ge increases the lattice parameter of γ phase, and low content Ge increases the lattice parameter of γphase more than that of high Ge content. Comparing Ge(4s24p2) with Si(3s23p2) and Al(3s2 3p1), which have the same outer-shell of electron structures, we found that their effects on the martensitic transformation of Fe-Mn alloy are completely different. The result suggests the outer-shell of electron is not the main factor of governing the Ms temperature of Fe-Mn alloy although it is essential in the alloy's antiferromagnetic transition. The relation among the Ms temperature, stacking fault energy and lattice parameter of austenite, has been discussed in brief.
基金supported by the Natural Science Foundation of the Educational Department of Liaoning Province,China (Grant Nos20060638 and 2008533)
文摘This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.